Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Proteome Res ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713017

RESUMO

Single-cell proteomics is a powerful approach to precisely profile protein landscapes within individual cells toward a comprehensive understanding of proteomic functions and tissue and cellular states. The inherent challenges associated with limited starting material demand heightened analytical sensitivity. Just as advances in sample preparation maximize the amount of material that makes it from the cell to the mass spectrometer, we strive to maximize the number of ions that make it from ion source to the detector. In isobaric tagging experiments, limited reporter ion generation limits quantitative accuracy and precision. The combination of infrared photoactivation and ion parking circumvents the m/z dependence inherent in HCD, maximizing reporter generation and avoiding unintended degradation of TMT reporter molecules in infrared-tandem mass tags (IR-TMT). The method was applied to single-cell human proteomes using 18-plex TMTpro, resulting in 4-5-fold increases in reporter signal compared to conventional SPS-MS3 approaches. IR-TMT enables faster duty cycles, higher throughput, and increased peptide identification and quantification. Comparative experiments showcase 4-5-fold lower injection times for IR-TMT, providing superior sensitivity without compromising accuracy. In all, IR-TMT enhances the dynamic range of proteomic experiments and is compatible with gas-phase fractionation and real-time searching, promising increased gains in the study of cellular heterogeneity.

2.
Mol Omics ; 20(3): 184-191, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38353725

RESUMO

Nanoflow liquid chromatography-mass spectrometry is key to enabling in-depth proteome profiling of trace samples, including single cells, but these separations can lack robustness due to the use of narrow-bore columns that are susceptible to clogging. In the case of single-cell proteomics, offline cleanup steps are generally omitted to avoid losses to additional surfaces, and online solid-phase extraction/trap columns frequently provide the only opportunity to remove salts and insoluble debris before the sample is introduced to the analytical column. Trap columns are traditionally short, packed columns used to load and concentrate analytes at flow rates greater than those employed in analytical columns, and since these first encounter the uncleaned sample mixture, trap columns are also susceptible to clogging. We hypothesized that clogging could be avoided by using large-bore porous layer open tubular trap columns (PLOTrap). The low back pressure ensured that the PLOTraps could also serve as the sample loop, thus allowing sample cleanup and injection with a single 6-port valve. We found that PLOTraps could effectively remove debris to avoid column clogging. We also evaluated multiple stationary phases and PLOTrap diameters to optimize performance in terms of peak widths and sample loading capacities. Optimized PLOTraps were compared to conventional packed trap columns operated in forward and backflush modes, and were found to have similar chromatographic performance of backflushed traps while providing improved debris removal for robust analysis of trace samples.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Proteômica , Proteômica/métodos , Cromatografia Líquida
3.
Curr Opin Biotechnol ; 86: 103077, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38359605

RESUMO

In recent years, single-cell proteomics (SCP) has advanced significantly, enabling the analysis of thousands of proteins within single mammalian cells. This progress is driven by advances in experimental design, with maturing label-free and multiplexed methods, optimized sample preparation, and innovations in separation techniques, including ultra-low-flow nanoLC. These factors collectively contribute to improved sensitivity, throughput, and reproducibility. Cutting-edge mass spectrometry platforms and data acquisition approaches continue to play a critical role in enhancing data quality. Furthermore, the exploration of spatial proteomics with single-cell resolution offers significant promise for understanding cellular interactions, giving rise to various phenotypes. SCP has far-reaching applications in cancer research, biomarker discovery, and developmental biology. Here, we provide a critical review of recent advances in the field of SCP.


Assuntos
Proteínas , Proteômica , Animais , Proteômica/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Proteoma , Mamíferos
4.
Cell Rep ; 43(1): 113636, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38183652

RESUMO

A limitation of conventional bulk-tissue proteome studies in amyotrophic lateral sclerosis (ALS) is the confounding of motor neuron (MN) signals by admixed non-MN proteins. Here, we leverage laser capture microdissection and nanoPOTS single-cell mass spectrometry-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control tissues. In a follow-up analysis, we examine the impact of stratification of MNs based on cytoplasmic transactive response DNA-binding protein 43 (TDP-43)+ inclusion pathology on the profiles of 2,238 proteins. We report extensive overlap in differentially abundant proteins identified in ALS MNs with or without overt TDP-43 pathology, suggesting early and sustained dysregulation of cellular respiration, mRNA splicing, translation, and vesicular transport in ALS. Together, these data provide insights into proteome-level changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein dynamics in human neurologic diseases.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , Neurônios Motores/metabolismo , Proteoma/metabolismo , Proteômica
5.
J Am Soc Mass Spectrom ; 34(10): 2374-2380, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37594399

RESUMO

Single-cell proteomics (SCP) can provide information that is unattainable through either bulk-scale protein measurements or single-cell profiling of other omes. Maximizing proteome coverage often requires custom instrumentation, consumables, and reagents for sample processing and separations, which has limited the accessibility of SCP to a small number of specialized laboratories. Commercial platforms have become available for SCP cell isolation and sample preparation, but the high cost of these platforms and the technical expertise required for their operation place them out of reach of many interested laboratories. Here, we assessed the new HP D100 Single Cell Dispenser for label-free SCP. The low-cost instrument proved highly accurate and reproducible for dispensing reagents in the range from 200 nL to 2 µL. We used the HP D100 to isolate and prepare single cells for SCP within 384-well PCR plates. When the well plates were immediately centrifuged following cell dispensing and again after reagent dispensing, we found that ∼97% of wells that were identified in the instrument software as containing a single cell indeed provided the proteome coverage expected of a single cell. This commercial dispenser combined with one-step sample processing provides a very rapid and easy-to-use workflow for SCP with no reduction in proteome coverage relative to a nanowell-based workflow, and the commercial well plates also facilitate autosampling with unmodified instrumentation. Single-cell samples were analyzed using home-packed 30 µm i.d. nanoLC columns as well as commercially available 50 µm i.d. columns. The commercial columns resulted in ∼35% fewer identified proteins. However, combined with the well plate-based preparation platform, the presented workflow provides a fully commercial and relatively low-cost alternative for SCP sample preparation and separation, which should greatly broaden the accessibility of SCP to other laboratories.


Assuntos
Proteoma , Proteômica , Proteoma/análise , Proteômica/métodos , Fluxo de Trabalho
6.
Analyst ; 148(15): 3466-3475, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395315

RESUMO

Although single cell RNA-seq has had a tremendous impact on biological research, a corresponding technology for unbiased mass spectrometric analysis of single cells has only recently become available. Significant technological breakthroughs including miniaturized sample handling have enabled proteome profiling of single cells. Furthermore, trapped ion mobility spectrometry (TIMS) in combination with parallel accumulation-serial fragmentation operated in data-dependent acquisition mode (DDA-PASEF) allowed improved proteome coverage from low-input samples. It has been demonstrated that modulating the ion flux in TIMS affects the overall performance of proteome profiling. However, the effect of TIMS settings on the analysis of low-input samples has been less investigated. Thus, we sought to optimize the conditions of TIMS with regard to ion accumulation/ramp times and ion mobility range for low-input samples. We observed that an ion accumulation time of 180 ms and monitoring a narrower ion mobility range from 0.7 to 1.3 V s cm-2 resulted in a substantial gain in the depth of proteome coverage and in detecting proteins with low abundance. We used these optimized conditions for proteome profiling of sorted human primary T cells, which yielded an average of 365, 804, 1116, and 1651 proteins from single, five, ten, and forty T cells, respectively. Notably, we demonstrated that the depth of proteome coverage from a low number of cells was sufficient to delineate several essential metabolic pathways and the T cell receptor signaling pathway. Finally, we showed the feasibility of detecting post-translational modifications including phosphorylation and acetylation from single cells. We believe that such an approach could be applied to label-free analysis of single cells obtained from clinically relevant samples.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Proteômica/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional
7.
J Am Soc Mass Spectrom ; 34(8): 1701-1707, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37410391

RESUMO

Sample preparation for single-cell proteomics is generally performed in a one-pot workflow with multiple dispensing and incubation steps. These hours-long processes can be labor intensive and lead to long sample-to-answer times. Here we report a sample preparation method that achieves cell lysis, protein denaturation, and digestion in 1 h using commercially available high-temperature-stabilized proteases with a single reagent dispensing step. Four different one-step reagent compositions were evaluated, and the mixture providing the highest proteome coverage was compared to the previously employed multistep workflow. The one-step preparation increases proteome coverage relative to the previous multistep workflow while minimizing labor input and the possibility of human error. We also compared sample recovery between previously used microfabricated glass nanowell chips and injection-molded polypropylene chips and found the polypropylene provided improved proteome coverage. Combined, the one-step sample preparation and the polypropylene substrates enabled the identification of an average of nearly 2400 proteins per cell using a standard data-dependent workflow with Orbitrap mass spectrometers. These advances greatly simplify sample preparation for single-cell proteomics and broaden accessibility with no compromise in terms of proteome coverage.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos , Polipropilenos , Espectrometria de Massas/métodos , Manejo de Espécimes
8.
bioRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37333094

RESUMO

Unbiased proteomics has been employed to interrogate central nervous system (CNS) tissues (brain, spinal cord) and fluid matrices (CSF, plasma) from amyotrophic lateral sclerosis (ALS) patients; yet, a limitation of conventional bulk tissue studies is that motor neuron (MN) proteome signals may be confounded by admixed non-MN proteins. Recent advances in trace sample proteomics have enabled quantitative protein abundance datasets from single human MNs (Cong et al., 2020b). In this study, we leveraged laser capture microdissection (LCM) and nanoPOTS (Zhu et al., 2018c) single-cell mass spectrometry (MS)-based proteomics to query changes in protein expression in single MNs from postmortem ALS and control donor spinal cord tissues, leading to the identification of 2515 proteins across MNs samples (>900 per single MN) and quantitative comparison of 1870 proteins between disease groups. Furthermore, we studied the impact of enriching/stratifying MN proteome samples based on the presence and extent of immunoreactive, cytoplasmic TDP-43 inclusions, allowing identification of 3368 proteins across MNs samples and profiling of 2238 proteins across TDP-43 strata. We found extensive overlap in differential protein abundance profiles between MNs with or without obvious TDP-43 cytoplasmic inclusions that together point to early and sustained dysregulation of oxidative phosphorylation, mRNA splicing and translation, and retromer-mediated vesicular transport in ALS. Our data are the first unbiased quantification of single MN protein abundance changes associated with TDP-43 proteinopathy and begin to demonstrate the utility of pathology-stratified trace sample proteomics for understanding single-cell protein abundance changes in human neurologic diseases.

9.
Angew Chem Int Ed Engl ; 62(34): e202303415, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37380610

RESUMO

We combined efficient sample preparation and ultra-low-flow liquid chromatography with a newly developed data acquisition and analysis scheme termed wide window acquisition (WWA) to quantify >3,000 proteins from single cells in rapid label-free analyses. WWA employs large isolation windows to intentionally co-isolate and co-fragment adjacent precursors along with the selected precursor. Optimized WWA increased the number of MS2-identified proteins by ≈40 % relative to standard data-dependent acquisition. For a 40-min LC gradient operated at ≈15 nL/min, we identified an average of 3,524 proteins per single-cell-sized aliquot of protein digest. Reducing the active gradient to 20 min resulted in a modest 10 % decrease in proteome coverage. Using this platform, we compared protein expression between single HeLa cells having an essential autophagy gene, atg9a, knocked out, with their isogenic WT parental line. Similar proteome coverage was observed, and 268 proteins were significantly up- or downregulated. Protein upregulation primarily related to innate immunity, vesicle trafficking and protein degradation.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Células HeLa , Proteômica/métodos , Cromatografia Líquida/métodos
10.
Anal Chem ; 95(20): 8020-8027, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37167627

RESUMO

Recent developments in mass spectrometry-based single-cell proteomics (SCP) have resulted in dramatically improved sensitivity, yet the relatively low measurement throughput remains a limitation. Isobaric and isotopic labeling methods have been separately applied to SCP to increase throughput through multiplexing. Here we combined both forms of labeling to achieve multiplicative scaling for higher throughput. Two-plex stable isotope labeling of amino acids in cell culture (SILAC) and isobaric tandem mass tag (TMT) labeling enabled up to 28 single cells to be analyzed in a single liquid chromatography-mass spectrometry (LC-MS) analysis, in addition to carrier, reference, and negative control channels. A custom nested nanowell chip was used for nanoliter sample processing to minimize sample losses. Using a 145-min total LC-MS cycle time, ∼280 single cells were analyzed per day. This measurement throughput could be increased to ∼700 samples per day with a high-duty-cycle multicolumn LC system producing the same active gradient. The labeling efficiency and achievable proteome coverage were characterized for multiple analysis conditions.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Cromatografia Líquida/métodos , Proteoma/análise , Marcação por Isótopo
11.
J Proteome Res ; 22(6): 1589-1602, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37093777

RESUMO

We compared three cell isolation and two proteomic sample preparation methods for single-cell and near-single-cell analysis. Whole blood was used to quantify hemoglobin (Hb) and glycated-Hb (gly-Hb) in erythrocytes using targeted mass spectrometry and stable isotope-labeled standard peptides. Each method differed in cell isolation and sample preparation as follows: 1) FACS and automated preparation in one-pot for trace samples (autoPOTS); 2) limited dilution via microscopy and a novel rapid one-pot sample preparation method that circumvented the need for the solid-phase extraction, low-volume liquid handling instrumentation and humidified incubation chamber; and 3) CellenONE-based cell isolation and the same one-pot sample preparation method used for limited dilution. Only the CellenONE device routinely isolated single-cells from which Hb was measured to be 540-660 amol per red blood cell (RBC), which was comparable to the calculated SI reference range for mean corpuscular hemoglobin (390-540 amol/RBC). FACSAria sorter and limited dilution could routinely isolate single-digit cell numbers, to reliably quantify CMV-Hb heterogeneity. Finally, we observed that repeated measures, using 5-25 RBCs obtained from N = 10 blood donors, could be used as an alternative and more efficient strategy than single RBC analysis to measure protein heterogeneity, which revealed multimodal distribution, unique for each individual.


Assuntos
Hemoglobinas , Proteômica , Proteômica/métodos , Hemoglobinas/análise , Hemoglobinas Glicadas , Eritrócitos/química , Espectrometria de Massas
12.
Nat Methods ; 20(3): 375-386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864200

RESUMO

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Assuntos
Benchmarking , Proteômica , Benchmarking/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Proteoma/análise
13.
J Proteome Res ; 21(9): 2237-2245, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35916235

RESUMO

Formalin-fixed, paraffin-embedded (FFPE) tissues are banked in large repositories to cost-effectively preserve valuable specimens for later study. With the rapid growth of spatial proteomics, FFPE tissues can serve as a more accessible alternative to more commonly used frozen tissues. However, extracting proteins from FFPE tissues is challenging due to cross-links formed between proteins and formaldehyde. Here, we have adapted the nanoPOTS sample processing workflow, which was previously applied to single cells and fresh-frozen tissues, to profile protein expression from FFPE tissues. Following the optimization of extraction solvents, times, and temperatures, we identified an average of 1312 and 3184 high-confidence master proteins from 10 µm thick FFPE-preserved mouse liver tissue squares having lateral dimensions of 50 and 200 µm, respectively. The observed proteome coverage for FFPE tissues was on average 88% of that achieved for similar fresh-frozen tissues. We also characterized the performance of our fully automated sample preparation and analysis workflow, termed autoPOTS, for FFPE spatial proteomics. This modified nanodroplet processing in one pot for trace samples (nanoPOTS) and fully automated processing in one pot for trace sample (autoPOTS) workflows provides the greatest coverage reported to date for high-resolution spatial proteomics applied to FFPE tissues. Data are available via ProteomeXchange with identifier PXD029729.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Formaldeído , Camundongos , Inclusão em Parafina/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Fixação de Tecidos
14.
Lab Chip ; 22(15): 2869-2877, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35838077

RESUMO

Spatial proteomics holds great promise for revealing tissue heterogeneity in both physiological and pathological conditions. However, one significant limitation of most spatial proteomics workflows is the requirement of large sample amounts that blurs cell-type-specific or microstructure-specific information. In this study, we developed an improved sample preparation approach for spatial proteomics and integrated it with our previously-established laser capture microdissection (LCM) and microfluidics sample processing platform. Specifically, we developed a hanging drop (HD) method to improve the sample recovery by positioning a nanowell chip upside-down during protein extraction and tryptic digestion steps. Compared with the commonly-used sitting-drop method, the HD method keeps the tissue pixel away from the container surface, and thus improves the accessibility of the extraction/digestion buffer to the tissue sample. The HD method can increase the MS signal by 7 fold, leading to a 66% increase in the number of identified proteins. An average of 721, 1489, and 2521 proteins can be quantitatively profiled from laser-dissected 10 µm-thick mouse liver tissue pixels with areas of 0.0025, 0.01, and 0.04 mm2, respectively. The improved system was further validated in the study of cell-type-specific proteomes of mouse uterine tissues.


Assuntos
Proteoma , Proteômica , Animais , Microdissecção e Captura a Laser/métodos , Camundongos , Proteômica/métodos , Manejo de Espécimes/métodos , Fluxo de Trabalho
15.
Mol Cell Proteomics ; 21(7): 100254, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654359

RESUMO

All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos
16.
Anal Chem ; 94(15): 6017-6025, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35385261

RESUMO

Single-cell proteomics (SCP) has great potential to advance biomedical research and personalized medicine. The sensitivity of such measurements increases with low-flow separations (<100 nL/min) due to improved ionization efficiency, but the time required for sample loading, column washing, and regeneration in these systems can lead to low measurement throughput and inefficient utilization of the mass spectrometer. Herein, we developed a two-column liquid chromatography (LC) system that dramatically increases the throughput of label-free SCP using two parallel subsystems to multiplex sample loading, online desalting, analysis, and column regeneration. The integration of MS1-based feature matching increased proteome coverage when short LC gradients were used. The high-throughput LC system was reproducible between the columns, with a 4% difference in median peptide abundance and a median CV of 18% across 100 replicate analyses of a single-cell-sized peptide standard. An average of 621, 774, 952, and 1622 protein groups were identified with total analysis times of 7, 10, 15, and 30 min, corresponding to a measurement throughput of 206, 144, 96, and 48 samples per day, respectively. When applied to single HeLa cells, we identified nearly 1000 protein groups per cell using 30 min cycles and 660 protein groups per cell for 15 min cycles. We explored the possibility of measuring cancer therapeutic targets with a pilot study comparing the K562 and Jurkat leukemia cell lines. This work demonstrates the feasibility of high-throughput label-free single-cell proteomics.


Assuntos
Peptídeos , Proteoma , Cromatografia Líquida/métodos , Células HeLa , Humanos , Peptídeos/análise , Projetos Piloto , Proteoma/análise
17.
Cell Syst ; 13(5): 426-434.e4, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35298923

RESUMO

Single-cell proteomics (scProteomics) promises to advance our understanding of cell functions within complex biological systems. However, a major challenge of current methods is their inability to identify and provide accurate quantitative information for low-abundance proteins. Herein, we describe an ion-mobility-enhanced mass spectrometry acquisition and peptide identification method, transferring identification based on FAIMS filtering (TIFF), to improve the sensitivity and accuracy of label-free scProteomics. TIFF extends the ion accumulation times for peptide ions by filtering out singly charged ions. The peptide identities are assigned by a three-dimensional MS1 feature matching approach (retention time, accurate mass, and FAIMS compensation voltage). The TIFF method enabled unbiased proteome analysis to a depth of >1,700 proteins in single HeLa cells, with >1,100 proteins consistently identified. As a demonstration, we applied the TIFF method to obtain temporal proteome profiles of >150 single murine macrophage cells during lipopolysaccharide stimulation and identified time-dependent proteome changes. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Proteoma , Proteômica , Animais , Cromatografia Líquida/métodos , Células HeLa , Humanos , Íons , Camundongos , Peptídeos/química , Proteoma/análise , Proteômica/métodos
18.
J Proteome Res ; 21(1): 182-188, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34920664

RESUMO

The goal of proteomics is to identify and quantify the complete set of proteins in a biological sample. Single-cell proteomics specializes in the identification and quantitation of proteins for individual cells, often used to elucidate cellular heterogeneity. The significant reduction in ions introduced into the mass spectrometer for single-cell samples could impact the features of MS2 fragmentation spectra. As all peptide identification software tools have been developed on spectra from bulk samples and the associated ion-rich spectra, the potential for spectral features to change is of great interest. We characterize the differences between single-cell spectra and bulk spectra by examining three fundamental spectral features that are likely to affect peptide identification performance. All features show significant changes in single-cell spectra, including the loss of annotated fragment ions, blurring signal and background peaks due to diminishing ion intensity, and distinct fragmentation pattern, compared to bulk spectra. As each of these features is a foundational part of peptide identification algorithms, it is critical to adjust algorithms to compensate for these losses.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Algoritmos , Peptídeos/química , Software
19.
J Proteome Res ; 21(3): 713-720, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34860515

RESUMO

Multimodal mass spectrometry imaging (MSI) is a critical technique used for deeply investigating biological systems by combining multiple MSI platforms in order to gain the maximum molecular information about a sample that would otherwise be limited by a single analytical technique. The aim of this work was to create a multimodal MSI approach that measures metabolomic and proteomic data from a single biological organ by combining infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) for metabolomic MSI and nanodroplet processing in one pot for trace samples (nanoPOTS) LC-MS/MS for spatially resolved proteome profiling. Adjacent tissue sections of rat brain were analyzed by each platform, and each data set was individually analyzed using previously optimized workflows. IR-MALDESI data sets were annotated by accurate mass and spectral accuracy using HMDB, METLIN, and LipidMaps databases, while nanoPOTS-LC-MS/MS data sets were searched against the rat proteome using the Sequest HT algorithm and filtered with a 1% FDR. The combined data revealed complementary molecular profiles distinguishing the corpus callosum against other sampled regions of the brain. A multiomic pathway integration showed a strong correlation between the two data sets when comparing average abundances of metabolites and corresponding enzymes in each brain region. This work demonstrates the first steps in the creation of a multimodal MSI technique that combines two highly sensitive and complementary imaging platforms. Raw data files are available in METASPACE (https://metaspace2020.eu/project/pace-2021) and MassIVE (identifier: MSV000088211).


Assuntos
Proteoma , Proteômica , Animais , Encéfalo/diagnóstico por imagem , Cromatografia Líquida/métodos , Ratos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem
20.
Nat Methods ; 18(6): 604-617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099939

RESUMO

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.


Assuntos
Análise de Sequência de Proteína/métodos , Imagem Individual de Molécula/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Proteínas/química , Proteômica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...