Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Elife ; 132024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012795

RESUMO

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remain poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta, and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal, and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.


Whether we are memorising facts or reacting to a loud noise, nerve cells in different brain areas must be able to communicate with one another through precise, meaningful signals. Specialized nerve cells known as interneurons act as "traffic lights" to precisely regulate when and where this information flows in neural circuits. Axo-axonic cells are a rare type of inhibitory interneuron that are thought to be particularly important for controlling the passage of information between different groups of excitatory neurons. This is because they only connect to one key part of their target cell ­ the axon-initial segment ­ where the electrical signals needed for brain communication (known as action potentials) are initiated. Since axo-axonic cells are inhibitory interneurons, this connection effectively allows them to 'veto' the generation of these signals at their source. Although axo-axonic cells have been identified in three brain regions using traditional anatomical methods, there were no 'tags' readily available that can reliably identify them. Therefore, much about these cells remained unknown, including how widespread they are in the mammalian brain. To solve this problem, Raudales et al. investigated which genes are switched on in axo-axonic cells but not in other cells, identifying a unique molecular signature that could be used to mark, record, and manipulate these cells. Microscopy imaging of brain tissue from mice in which axo-axonic cells had been identified revealed that they are present in many more brain areas than previously thought, including nearly all regions of the broadly defined cerebral cortex and even the hypothalamus, which controls many innate behaviors. Axo-axonic cells were also 'wired up' differently, depending on where they were located; for example, those in brain areas associated with memory and emotions had wider-ranging input connections than other areas. The finding of Raudales et al. provide, for the first time, a method to directly track and manipulate axo-axonic cells in the brain. Since dysfunction in axo-axonic cells is also associated with neurological disorders like epilepsy and schizophrenia, gaining an insight into their distribution and connectivity could help to develop better treatments for these conditions.


Assuntos
Neurônios GABAérgicos , Interneurônios , Animais , Interneurônios/fisiologia , Interneurônios/metabolismo , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Camundongos , Encéfalo/fisiologia , Encéfalo/citologia , Sinapses/fisiologia , Sinapses/metabolismo , Axônios/fisiologia , Axônios/metabolismo , Masculino
2.
J Clin Invest ; 134(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007272

RESUMO

A growing body of research has identified circadian-rhythm disruption as a risk factor for metabolic health. However, the underlying biological basis remains complex, and complete molecular mechanisms are unknown. There is emerging evidence from animal and human research to suggest that the expression of core circadian genes, such as circadian locomotor output cycles kaput gene (CLOCK), brain and muscle ARNT-Like 1 gene (BMAL1), period (PER), and cyptochrome (CRY), and the consequent expression of hundreds of circadian output genes are integral to the regulation of cellular metabolism. These circadian mechanisms represent potential pathophysiological pathways linking circadian disruption to adverse metabolic health outcomes, including obesity, metabolic syndrome, and type 2 diabetes. Here, we aim to summarize select evidence from in vivo animal models and compare these results with epidemiologic research findings to advance understanding of existing foundational evidence and potential mechanistic links between circadian disruption and altered clock gene expression contributions to metabolic health-related pathologies. Findings have important implications for the treatment, prevention, and control of metabolic pathologies underlying leading causes of death and disability, including diabetes, cardiovascular disease, and cancer.


Assuntos
Proteínas CLOCK , Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Humanos , Animais , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/genética , Obesidade/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Relógios Circadianos/genética
3.
Pancreas ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696422

RESUMO

OBJECTIVES: The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the development of several cancers, and can be targeted for therapeutic effect. However, its involvement in the pathogenesis of PDAC remains unclear. To address this gap, we evaluated the role of AHR in the development of PDAC pre-cancerous lesions in vivo. METHODS: We created a global AHR-null, mutant Kras-driven PDAC mouse model (A-/-KC) and evaluated the changes in PDAC precursor lesion formation (Pan-IN 1, 2, and 3) and associated fibro-inflammation between KC and A-/-KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. RESULTS: We identified a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A-/-KC vs KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. CONCLUSION: These findings show the loss of AHR results in heightened Kras-induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.

4.
J Org Chem ; 89(11): 7618-7629, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38767619

RESUMO

An efficient and scalable route to tert-butyl 3-oxo-3H-spiro[benzofuran-2,4'-piperidine]-1'-carboxylate, a central prochiral intermediate in the synthesis of SHP2 inhibitor GDC-1971 (migoprotafib), was achieved. Preparation of the title compound from readily available 2-fluorobenzaldehyde included formation of a modified Katritzky benzotriazole hemiaminal, which, upon deprotonation by n-butyllithium, participated in umpolung reactivity via 1,2-addition to tert-butyl 4-oxopiperidine-1-carboxylate (N-Boc-4-piperidone). Most notably, this reaction was developed as a robust plug-flow process that could be executed on multiple kilograms without the need for pilot-scale reaction vessels operating at low cryogenic temperatures. Treatment of the resulting tetrahedral intermediate with oxalic acid resulted in collapse to the corresponding 4-(2-fluorobenzoyl)-4-hydroxypiperidine, which was isolated as a solid via crystallization. The synthesis concluded with an optimized intramolecular SNAr reaction and final crystallization to generate tert-butyl 3-oxo-3H-spiro[benzofuran-2,4'-piperidine]-1'-carboxylate as a stable, high-quality intermediate suitable for further functionalization toward GDC-1971.

5.
Med ; 5(4): 348-367.e7, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38521069

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3ß1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS: Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS: We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3ß1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3ß1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS: Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING: This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Integrina alfa3beta1 , Projetos Piloto , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Colágeno , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Microambiente Tumoral
6.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37986757

RESUMO

Axo-axonic cells (AACs), also called chandelier cells (ChCs) in the cerebral cortex, are the most distinctive type of GABAergic interneurons described in the neocortex, hippocampus, and basolateral amygdala (BLA). AACs selectively innervate glutamatergic projection neurons (PNs) at their axon initial segment (AIS), thus may exert decisive control over PN spiking and regulate PN functional ensembles. However, the brain-wide distribution, synaptic connectivity, and circuit function of AACs remains poorly understood, largely due to the lack of specific and reliable experimental tools. Here, we have established an intersectional genetic strategy that achieves specific and comprehensive targeting of AACs throughout the mouse brain based on their lineage (Nkx2.1) and molecular (Unc5b, Pthlh) markers. We discovered that AACs are deployed across essentially all the pallium-derived brain structures, including not only the dorsal pallium-derived neocortex and medial pallium-derived hippocampal formation, but also the lateral pallium-derived claustrum-insular complex, and the ventral pallium-derived extended amygdaloid complex and olfactory centers. AACs are also abundant in anterior olfactory nucleus, taenia tecta and lateral septum. AACs show characteristic variations in density across neocortical areas and layers and across subregions of the hippocampal formation. Neocortical AACs comprise multiple laminar subtypes with distinct dendritic and axonal arborization patterns. Retrograde monosynaptic tracing from AACs across neocortical, hippocampal and BLA regions reveal shared as well as distinct patterns of synaptic input. Specific and comprehensive targeting of AACs facilitates the study of their developmental genetic program and circuit function across brain structures, providing a ground truth platform for understanding the conservation and variation of a bona fide cell type across brain regions and species.

8.
Front Oncol ; 13: 1253659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37817770

RESUMO

Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.

9.
J Neuroophthalmol ; 43(3): 430-433, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37440372

RESUMO

ABSTRACT: A 74-year-old man with chronic obstructive pulmonary disease, glaucoma, and Stage IIIB squamous cell lung cancer experienced several minutes of flashing lights in his right visual hemifield, followed by onset of a right visual field defect. On examination, the patient had a right homonymous hemianopsia that was most dense inferiorly by confrontation testing. Emergent CT scan of the head revealed a 2.5 × 3 cm hypodensity in the left occipital lobe, which was interpreted as an acute stroke. Continuous EEG monitoring captured left posterior quadrant seizures that were temporally correlated to the positive visual phenomena. Subsequent MRI of the brain with and without contrast revealed a conglomerate of centrally necrotic and peripherally enhancing mass lesions. On biopsy, a thick purulent material was drained and Gram stain of the sample revealed gram-positive beaded rods, which speciated to Nocardia farcinica . The patient was treated with a six-week course of intravenous meropenem and a one-year course of oral trimethroprim-sulfamethoxazole. On follow-up, the patient experienced resolution of the right visual field deficit.


Assuntos
Nocardiose , Nocardia , Masculino , Humanos , Idoso , Hemianopsia/diagnóstico , Hemianopsia/etiologia , Abscesso/patologia , Nocardiose/complicações , Nocardiose/diagnóstico , Nocardiose/patologia , Encéfalo/patologia , Transtornos da Visão , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/patologia
10.
PLoS Genet ; 19(6): e1010770, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37262074

RESUMO

Disruption of the circadian clock is linked to cancer development and progression. Establishing this connection has proven beneficial for understanding cancer pathogenesis, determining prognosis, and uncovering novel therapeutic targets. However, barriers to characterizing the circadian clock in human pancreas and human pancreatic cancer-one of the deadliest malignancies-have hindered an appreciation of its role in this cancer. Here, we employed normalized coefficient of variation (nCV) and clock correlation analysis in human population-level data to determine the functioning of the circadian clock in pancreas cancer and adjacent normal tissue. We found a substantially attenuated clock in the pancreatic cancer tissue. Then we exploited our existing mouse pancreatic transcriptome data to perform an analysis of the human normal and pancreas cancer samples using a machine learning method, cyclic ordering by periodic structure (CYCLOPS). Through CYCLOPS ordering, we confirmed the nCV and clock correlation findings of an intact circadian clock in normal pancreas with robust cycling of several core clock genes. However, in pancreas cancer, there was a loss of rhythmicity of many core clock genes with an inability to effectively order the cancer samples, providing substantive evidence of a dysregulated clock. The implications of clock disruption were further assessed with a Bmal1 knockout pancreas cancer model, which revealed that an arrhythmic clock caused accelerated cancer growth and worse survival, accompanied by chemoresistance and enrichment of key cancer-related pathways. These findings provide strong evidence for clock disruption in human pancreas cancer and demonstrate a link between circadian disruption and pancreas cancer progression.


Assuntos
Relógios Circadianos , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Relógios Circadianos/genética , Ritmo Circadiano/genética , Minociclina , Neoplasias Pancreáticas/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Neoplasias Pancreáticas
11.
Chronobiol Int ; 40(4): 417-437, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36912021

RESUMO

Misalignment of the circadian clock compared to environmental cues causes circadian desynchrony, which is pervasive in humans. Clock misalignment can lead to various pathologies including obesity and diabetes, both of which are associated with pancreatic ductal adenocarcinoma - a devastating cancer with an 80% five-year mortality rate. Although circadian desynchrony is associated with an increased risk of several solid-organ cancers, the correlation between clock misalignment and pancreas cancer is unclear. Using a chronic jetlag model, we investigated the impact of clock misalignment on pancreas cancer initiation in mice harboring a pancreas-specific activated Kras mutation. We found that chronic jetlag accelerated the development of pancreatic cancer precursor lesions, with a concomitant increase in precursor lesion grade. Cell-autonomous knock-out of the clock in pancreatic epithelial cells of Kras-mutant mice demonstrated no acceleration of precursor lesion formation, indicating non-cell-autonomous clock dysfunction was responsible for the expedited tumor development. Therefore, we applied single-cell RNA sequencing over time and identified fibroblasts as the cell population manifesting the greatest clock-dependent changes, with enrichment of specific cancer-associated fibroblast pathways due to circadian misalignment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Ritmo Circadiano/genética , Obesidade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
12.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778364

RESUMO

Objectives: The pathogenesis of pancreas cancer (PDAC) remains poorly understood, hindering efforts to develop a more effective therapy for PDAC. Recent discoveries show the aryl hydrocarbon receptor (AHR) plays a crucial role in the pathogenesis of several cancers, and can be targeted for therapeutic effect. However, its involvement in PDAC remains unclear. Therefore, we evaluated the role of AHR in the development of PDAC in vivo. Methods: We created a global AHR-null, mutant Kras-driven PDAC mouse model (A-/-KC) and evaluated the changes in PDAC precursor lesion formation (Pan-IN 1, 2, and 3) and associated fibro-inflammation between KC and A-/-KC at 5 months of age. We then examined the changes in the immune microenvironment followed by single-cell RNA-sequencing analysis to evaluate concomitant transcriptomic changes. Results: We found a significant increase in PanIN-1 lesion formation and PanIN-1 associated fibro-inflammatory infiltrate in A-/-KC vs KC mice. This was associated with significant changes in the adaptive immune system, particularly a decrease in the CD4+/CD8+ T-cell ratio, as well as a decrease in the T-regulatory/Th17 T-cell ratio suggesting unregulated inflammation. Conclusion: These findings show the loss of AHR results in heightened Kras-induced PanIN formation, through modulation of immune cells within the pancreatic tumor microenvironment.

13.
Ann Surg Oncol ; 29(11): 6606-6614, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35672624

RESUMO

BACKGROUND: Patients undergoing cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) are frequently admitted to the intensive care unit (ICU) for mitigation of potential complications, although ICU length of stay (LOS) is a significant driver of cost. This study asked whether a fiscal argument could be made for the selective avoidance of ICU admission after CRS/HIPEC. METHODS: Prospective data for select low-risk patients (e.g., lower peritoneal cancer index [PCI]) admitted to the intermediate care unit (IMC) instead of the ICU after CRS/HIPEC were matched with a historic cohort routinely admitted to the ICU. Cohort comparisons and the impact of the intervention on cost were assessed. RESULTS: The study matched 81 CRS/HIPEC procedures to form a cohort of 49 pre- and 15 post-intervention procedures for patients with similar disease burdens (mean PCI, 8 ± 6.7 vs. 7 ± 5.1). The pre-intervention patients stayed a median of 1 day longer in the ICU (1 day [IQR, 1-1 day] vs. 0 days [IQR, 0-0 days]) and had a longer LOS (8 days [IQR, 7-11 days] vs. 6 days [IQR, 5.5-9 days]). Complications and complication severity did not differ statistically. The median total hospital cost was lower after intervention ($30,845 [IQR, $30,181-$37,725] vs. $41,477 [IQR, $33,303-$51,838]), driven by decreased indirect fixed cost ($8984 [IQR, $8643-$11,286] vs. $14,314 [IQR, $12,206-$18,266]). In a weighted multiple variable linear regression analysis, the intervention was associated with a savings of $2208.68 per patient. CONCLUSIONS: Selective admission to the IMC after CRS/HIPEC was associated with $2208.68 in savings per patient without added risk. In this era of cost-conscious practice of medicine, these data highlight an opportunity to decrease cost by more than 5% for patients undergoing CRS/HIPEC.


Assuntos
Hipertermia Induzida , Intervenção Coronária Percutânea , Neoplasias Peritoneais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Quimioterapia do Câncer por Perfusão Regional , Terapia Combinada , Cuidados Críticos , Procedimentos Cirúrgicos de Citorredução/efeitos adversos , Humanos , Hipertermia Induzida/efeitos adversos , Neoplasias Peritoneais/etiologia , Neoplasias Peritoneais/terapia , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida
14.
Pancreas ; 51(1): 80-89, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195599

RESUMO

OBJECTIVES: The innate biologic clock plays a significant role in lipid metabolism, including the peripheral clock in the pancreas. However, an evaluation of the downstream lipids in the pancreatic lipidome is lacking. We sought to understand the diurnal variations of lipids within the pancreatic lipidome. METHODS: At 4 weeks of age, C57Bl/6J mice were subjected to either normal lighting conditions or a chronic jetlag (CJ) condition known to mimic chronic shiftwork in humans. At 9 months, mice were serially killed at 4-hour intervals for 24 hours. The pancreas was removed and subjected to untargeted liquid chromatography-mass spectrometry to examine the pancreatic lipidome. RESULTS: A total of 4.7% of the pancreatic lipidome was rhythmically expressed, which increased to 12.9% after CJ. After CJ, there was a 4.58-hour shift in the timing of peak 24-hour lipid expression. Chronic jetlag also led to the enrichment of diacylglycerols and triglycerides, while promoting a decrease in lysophosphatidylcholines and 44-carbon acyl chain lipids. CONCLUSIONS: The pancreatic lipidome exhibits diurnal rhythmicity across a broad number of lipid classes. Chronic jetlag led to alterations in lipid composition that mirrored other metabolically active organs. Several of the reported changes may link altered sleep-wake cycles with known circadian disruption-induced pancreatic diseases.


Assuntos
Lipidômica , Hormônios Pancreáticos/metabolismo , Privação do Sono/metabolismo , Animais , Ritmo Circadiano , Humanos , Camundongos Endogâmicos C57BL
15.
PLoS One ; 16(11): e0259245, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735515

RESUMO

Anal squamous cell carcinoma (SCC) will be diagnosed in an estimated 9,080 adults in the United States this year, and rates have been rising over the last several decades. Most people that develop anal SCC have associated human papillomavirus (HPV) infection (~85-95%), with approximately 5-15% of anal SCC cases occurring in HPV-negative patients from unknown etiology. This study identified and characterized the Kras-driven, female sex hormone-dependent development of anal squamous cell carcinoma (SCC) in the LSL-KrasG12D; Pdx1-Cre (KC) mouse model that is not dependent on papillomavirus infection. One hundred percent of female KC mice develop anal SCC, while no male KC mice develop tumors. Both male and female KC anal tissue express Pdx1 and Cre-recombinase mRNA, and the activated mutant KrasG12D gene. Although the driver gene mutation KrasG12D is present in anus of both sexes, only female KC mice develop Kras-mutant induced anal SCC. To understand the sex-dependent differences, KC male mice were castrated and KC female mice were ovariectomized. Castrated KC males displayed an unchanged phenotype with no anal tumor formation. In contrast, ovariectomized KC females demonstrated a marked reduction in anal SCC development, with only 15% developing anal SCC. Finally, exogenous administration of estrogen rescued the tumor development in ovariectomized KC female mice and induced tumor development in castrated KC males. These results confirm that the anal SCC is estrogen mediated. The delineation of the role of female sex hormones in mediating mutant Kras to drive anal SCC pathogenesis highlights a subtype of anal SCC that is independent of papillomavirus infection. These findings may have clinical applicability for the papillomavirus-negative subset of anal SCC patients that typically respond poorly to standard of care chemoradiation.


Assuntos
Neoplasias do Ânus/patologia , Carcinoma de Células Escamosas/patologia , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Transativadores/genética , Animais , Neoplasias do Ânus/genética , Neoplasias do Ânus/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Estrogênios/metabolismo , Feminino , Masculino , Camundongos , Mutação , Ovariectomia , Fatores Sexuais
16.
Vaccine ; 39(29): 3862-3870, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34090702

RESUMO

Bacillus anthracis, the causative agent of anthrax, continues to be a prominent biological warfare and bioterrorism threat. Vaccination is likely to remain the most effective and user-friendly public health measure to counter this threat in the foreseeable future. The commercially available AVA BioThrax vaccine has a number of shortcomings where improvement would lead to a more practical and effective vaccine for use in the case of an exposure event. Identification of more effective adjuvants and novel delivery platforms is necessary to improve not only the effectiveness of the anthrax vaccine, but also enhance its shelf stability and ease-of-use. Polyanhydride particles have proven to be an effective platform at adjuvanting the vaccine-associated adaptive immune response as well as enhancing stability of encapsulated antigens. Another class of adjuvants, the STING pathway-targeting cyclic dinucleotides, have proven to be uniquely effective at inducing a beneficial inflammatory response that leads to the rapid induction of high titer antibodies post-vaccination capable of providing protection against bacterial pathogens. In this work, we evaluate the individual contributions of cyclic di-GMP (CDG), polyanhydride nanoparticles, and a combination thereof towards inducing neutralizing antibody (nAb) against the secreted protective antigen (PA) from B. anthracis. Our results show that the combination nanovaccine elicited rapid, high titer, and neutralizing IgG anti-PA antibody following single dose immunization that persisted for at least 108 DPI.


Assuntos
Vacinas contra Antraz , Antraz , Bacillus anthracis , Toxinas Bacterianas , Antraz/prevenção & controle , Anticorpos Antibacterianos , Anticorpos Neutralizantes , Antígenos de Bactérias , Humanos , Imunidade Humoral
17.
Physiol Genomics ; 53(8): 319-335, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34056925

RESUMO

Cell-autonomous circadian clocks exist in nearly every organ and function to maintain homeostasis through a complex series of transcriptional-translational feedback loops. The response of these peripheral clocks to external perturbations, such as chronic jetlag and shift work, has been extensively investigated. However, an evaluation of the effects of chronic jetlag on the mouse pancreatic transcriptome is still lacking. Herein, we report an evaluation of the diurnal variations encountered in the pancreatic transcriptome following exposure to an established chronic jetlag protocol. We found approximately 5.4% of the pancreatic transcriptome was rhythmic. Following chronic jetlag, we found the number of rhythmic transcripts decreased to approximately 3.6% of the transcriptome. Analysis of the core clock genes, which orchestrate circadian physiology, revealed that nearly all exhibited a shift in the timing of peak gene expression-known as a phase shift. Similarly, over 95% of the rhythmically expressed genes in the pancreatic transcriptome exhibited a phase shift, many of which were found to be important for metabolism. Evaluation of the genes involved in pancreatic exocrine secretion and insulin signaling revealed many pancreas-specific genes were also rhythmically expressed and several displayed a concomitant phase shift with chronic jetlag. Phase differences were found 9 days after normalization, indicating a persistent failure to reentrain to the new light-dark cycle. This study is the first to evaluate the endogenous pancreatic clock and rhythmic gene expression in whole pancreas over 48 h, and how the external perturbation of chronic jetlag affects the rhythmic expression of genes in the pancreatic transcriptome.


Assuntos
Ritmo Circadiano/genética , Regulação da Expressão Gênica , Síndrome do Jet Lag/genética , Pâncreas/fisiologia , Animais , Comportamento Animal/fisiologia , Escuridão , Feminino , Insulina/genética , Insulina/metabolismo , Luz , Masculino , Camundongos Endogâmicos C57BL
19.
Curr Top Microbiol Immunol ; 433: 29-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33165869

RESUMO

As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.


Assuntos
Nanopartículas , Vacinas , Adjuvantes Imunológicos , Humanos , Imunidade Humoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...