Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 42(3): 627-630, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146544

RESUMO

We report on the soliton-mediated orientational ordering of gold nanorods in a colloidal plasmonic suspension. Due to the nonlinear optical response of the suspension, a light beam forms an optical spatial soliton which creates an effective optical waveguide. The orientation of the nanorods along the waveguide is regulated by the optical torque exerted by the linearly polarized soliton beam. By measuring the polarization transmission spectrum of a probe beam at a wavelength far from the plasmonic resonance, we observe orientation-enhanced birefringence along the soliton channel, suggesting a disorder-to-order transition of nanorods due to the action of the soliton beam. This approach may be applied in other colloidal systems with optical force-induced nonlinearity.

2.
Opt Lett ; 41(16): 3817-20, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519097

RESUMO

We demonstrate two different types of coupled beam propagation dynamics in colloidal gold nanosuspensions. In the first case, an infrared (IR) probe beam (1064 nm) is guided by a low-power visible beam (532 nm) in a gold nanosphere or in nanorod suspensions due to the formation of a plasmonic resonant soliton. Although the IR beam does not experience nonlinear self-action effects, even at high power levels, needle-like deep penetration of both beams through otherwise highly dissipative suspensions is realized. In the second case, a master/slave-type nonlinear coupling is observed in gold nanoshell suspensions, in which the nanoparticles have opposite polarizabilities at the visible and IR wavelengths. In this latter regime, both beams experience a self-focusing nonlinearity that can be fine-tuned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA