Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 29(2): 249-258.e5, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34547225

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDLR) degradation. Therapeutic antibodies that disrupt PCSK9-LDLR binding reduce LDL-C concentrations and cardiovascular disease risk. The epidermal growth factor precursor homology domain A (EGF-A) of the LDLR serves as a primary contact with PCSK9 via a flat interface, presenting a challenge for identifying small molecule PCSK9-LDLR disruptors. We employ an affinity-based screen of 1013in vitro-translated macrocyclic peptides to identify high-affinity PCSK9 ligands that utilize a unique, induced-fit pocket and partially disrupt the PCSK9-LDLR interaction. Structure-based design led to molecules with enhanced function and pharmacokinetic properties (e.g., 13PCSK9i). In mice, 13PCSK9i reduces plasma cholesterol levels and increases hepatic LDLR density in a dose-dependent manner. 13PCSK9i functions by a unique, allosteric mechanism and is the smallest molecule identified to date with in vivo PCSK9-LDLR disruptor function.


Assuntos
Peptídeos/farmacologia , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/síntese química , Peptídeos/química , Conformação Proteica , Receptores de LDL/metabolismo
2.
Bioorg Med Chem Lett ; 23(19): 5410-4, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953189

RESUMO

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Receptores de Grelina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sítios de Ligação , Agonismo Inverso de Drogas , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Indanos/química , Indanos/farmacologia , Concentração Inibidora 50 , Isomerismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade
3.
ACS Med Chem Lett ; 3(5): 397-401, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-24900484

RESUMO

Antagonism of cannabinoid-1 (CB1) receptor signaling has been demonstrated to inhibit feeding behaviors in humans, but CB1-mediated central nervous system (CNS) side effects have halted the marketing and further development of the lead drugs against this target. However, peripherally restricted CB1 receptor antagonists may hold potential for providing the desired efficacy with reduced CNS side effect profiles. In this report we detail the discovery and structure-activity-relationship analysis of a novel bicyclic scaffold (3) that exhibits potent CB1 receptor antagonism and oral activity in preclinical feeding models. Optimization of physical properties has led to the identification of analogues which are predicted to have reduced CNS exposure and could serve as a starting point for the design of peripherally targeted CB1 receptor antagonists.

4.
BMC Pharmacol ; 10: 9, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20712891

RESUMO

BACKGROUND: Cannabinoid 1 (CB1) receptor antagonists exhibit pharmacological properties favorable for the treatment of obesity and other related metabolic disorders. CE-178253 (1-[7-(2-Chlorophenyl)-8-(4-chlorophenyl)-2-methylpyrazolo[1,5-a]-[1,3,5]triazin-4-yl]-3-ethylaminoazetidine-3-carboxylic acid hydrochloride) is a recently discovered selective centrally-acting CB1 receptor antagonist. Despite a large body of knowledge on cannabinoid receptor antagonists little data exist on the quantitative pharmacology of this therapeutic class of drugs. The purpose of the current studies was to evaluate the quantitative pharmacology and concentration/effect relationships of CE-178253 based on unbound plasma concentration and in vitro pharmacology data in different in vivo preclinical models of FI and energy expenditure. RESULTS: In vitro, CE-178253 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.33 nM) and functional assays (Ki = 0.07 nM). CE-178253 has low affinity (Ki > 10,000 nM) for human CB2 receptors. In vivo, CE-178253 exhibits concentration-dependent anorectic activity in both fast-induced re-feeding and spontaneous nocturnal feeding FI models. As measured by indirect calorimetry, CE-178253 acutely stimulates energy expenditure by greater than 30% in rats and shifts substrate oxidation from carbohydrate to fat as indicated by a decrease the respiratory quotient from 0.85 to 0.75. Determination of the concentration-effect relationships and ex vivo receptor occupancy in efficacy models of energy intake and expenditure suggest that a greater than a 2-fold coverage of the Ki (50-75% receptor occupancy) is required for maximum efficacy. Finally, in two preclinical models of obesity, CE-178253 dose-dependently promotes weight loss in diet-induced obese rats and mice. CONCLUSIONS: We have combined quantitative pharmacology and ex vivo CB1 receptor occupancy data to assess concentration/effect relationships in food intake, energy expenditure and weight loss studies. Quantitative pharmacology studies provide a strong a foundation for establishing and improving confidence in mechanism as well as aiding in the progression of compounds from preclinical pharmacology to clinical development.


Assuntos
Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Obesidade/tratamento farmacológico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Triazinas/farmacologia , Triazinas/uso terapêutico , Redução de Peso/efeitos dos fármacos , Animais , Depressores do Apetite/metabolismo , Depressores do Apetite/farmacocinética , Azetidinas/metabolismo , Azetidinas/farmacocinética , Ligação Competitiva , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Triazinas/metabolismo , Triazinas/farmacocinética
5.
Biochem Biophys Res Commun ; 394(2): 366-71, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20211605

RESUMO

Cannabinoid CB(1) receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB(1) receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB(1) receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB(1) receptors in both binding (K(i)=0.7 nM) and functional assays (K(i)=0.2 nM). The compound has low affinity (K(i)=7600 nM) for human CB(2) receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB(1) receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB(1) receptor competitive antagonist that may further our understanding of the endocannabinoid system.


Assuntos
Fármacos Antiobesidade/farmacologia , Obesidade/tratamento farmacológico , Piperidinas/farmacologia , Purinas/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Fármacos Antiobesidade/uso terapêutico , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consumo de Oxigênio , Piperidinas/uso terapêutico , Purinas/uso terapêutico , Ratos , Ratos Sprague-Dawley
6.
Am J Physiol Endocrinol Metab ; 295(5): E1142-51, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18728225

RESUMO

c-Jun NH(2)-terminal kinase (JNK) plays an important role in insulin resistance; however, identification of pharmacologically potent and selective small molecule JNK inhibitors has been limited. Compound A has a cell IC(50) of 102 nM and is at least 100-fold selective against related kinases and 27-fold selective against glycogen synthase kinase-3beta and cyclin-dependent kinase-2. In C57BL/6 mice, compound A reduced LPS-mediated increases in both plasma cytokine levels and phosphorylated c-Jun in adipose tissue. Treatment of mice fed a high-fat diet with compound A for 3 wk resulted in a 13.1 +/- 1% decrease in body weight and a 9.3 +/- 1.5% decrease in body fat, compared with a 6.6 +/- 2.1% increase in body weight and a 6.7 +/- 2.1% increase in body fat in vehicle-treated mice. Mice pair fed to those that received compound A exhibited a body weight decrease of 7 +/- 1% and a decrease in body fat of 1.6 +/- 1.3%, suggesting that reductions in food intake could not account solely for the reductions in adiposity observed. Compound A dosed at 30 mg/kg for 13 days in high-fat fed mice resulted in a significant decrease in phosphorylated c-Jun in adipose tissue accompanied by a decrease in weight and reductions in glucose and triglycerides and increases in insulin sensitivity to levels comparable with those in lean control mice. The ability of compound A to reduce the insulin-stimulated phosphorylation of insulin receptor substrate-1 (IRS-1) von Ser307 and partially reverse the free fatty acid inhibition of glucose uptake in 3T3L1 adipocytes, suggests that enhancement of insulin signaling in addition to weight loss may contribute to the effects of compound A on insulin sensitization in vivo. Pharmacological inhibition of JNK using compound A may therefore offer an effective therapy for type 2 diabetes mediated at least in part via weight reduction.


Assuntos
Aminopiridinas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Células 3T3-L1 , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Aminopiridinas/farmacocinética , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Citocinas/sangue , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Insulina/sangue , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/patologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Células U937
7.
Bioorg Med Chem Lett ; 16(3): 731-6, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16263283

RESUMO

A series of conformationally constrained bicyclic derivatives derived from SR141716 was prepared and evaluated as hCB(1)-R antagonists and inverse agonists. Optimization of the structure-activity relationships around the 2,6-dihydro-pyrazolo[4,3-d]pyrimidin-7-one derivative 2a led to the identification of two compounds with oral activity in rodent feeding models (2h and 4a). Replacement of the PP group in 2h with other bicyclic groups resulted in a loss of binding affinity.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Comportamento Alimentar/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Sítios de Ligação , Comportamento Alimentar/fisiologia , Modelos Biológicos , Piperidinas/química , Pirazóis/química , Pirazolonas/química , Pirimidinonas/química , Receptor CB1 de Canabinoide/agonistas , Rimonabanto , Roedores , Relação Estrutura-Atividade
8.
Eur J Pharmacol ; 462(1-3): 125-32, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12591104

RESUMO

We determined the effect of a cannabinoid CB1 receptor antagonist (AM-251; N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) on food intake, body weight and adipose tissue mass in Western diet-induced obese (DIO) mice using a chronic, interrupted, oral dosing paradigm. The dosing paradigm was 2 weeks on treatment (treatment 1), 2 weeks off-treatment, followed by 2 weeks on treatment (treatment 2). During treatment 1 and treatment 2, food intake and body weight were reduced after a single dose. At 30 mg/kg/day, anorectic efficacy was maintained through 12 days (treatment 1) and 7 days (treatment 2). Body weight of AM-251-treated mice remained less than vehicle-treated mice throughout treatment 1 and treatment 2. Administration of AM-251 reduced inguinal subcutaneous, retroperitoneal and mesenteric adipose tissue mass. Antiobesity effects of AM-251 were lost during the off-treatment period, and hyperphagia was observed in treated animals. With re-initiation of AM-251 treatment, mice again responded to the effects of the compound. These results support the hypothesis that chronic treatment of obese individuals with cannabinoid CB1 receptor antagonists is a viable pharmacologic approach to sustained weight loss.


Assuntos
Gorduras na Dieta/administração & dosagem , Obesidade/prevenção & controle , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Droga/antagonistas & inibidores , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Insulina/sangue , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/etiologia , Receptores de Canabinoides , Triglicerídeos/sangue
9.
J Pharmacol Toxicol Methods ; 47(2): 99-106, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12459149

RESUMO

INTRODUCTION: Obesity is a significant public health concern with considerable academic and industrial research effort underway to discover novel drugs to treat this disease. The aim of this study was to validate a recently developed high-resolution X-ray computed tomography (micro CT) system capable of measuring murine adipose tissue depot mass in situ. METHODS: The micro CT was used to generate a series of cross-sectional X-ray images from which individual adipose tissue depot mass was quantified. Four individual adipose tissue depots were studied: inguinal subcutaneous, epididymal, retroperitoneal, and mesenteric. The relationship between micro CT-derived adipose tissue mass and adipose mass measured gravimetrically was determined. The effect of strain (C57/Bl6, C3H/HeNCR1BR, and db/db) and age (49 vs. 99 days) on adipose tissue depot mass was studied. RESULTS: Validation studies in which adipose tissue depot mass was determined by micro CT and by gravimetry were conducted in the three strains of mice at 49 and 99 days of age. The correlation of micro CT and gravimetric measures of adipose tissue mass exceeded 90% in all strains at 99 days, and in the C57/Bl6 and C3H/HeNCR1BR strains at 49 days. At 49 days, the correlation in the db/db strain was 82%. Micro CT methodology distinguished both age and strain differences in the adipose tissue depots studied (P<.0001, in all cases). DISCUSSION: Micro CT is a valid method to quantify the mass of individual adipose tissue depots in mice. This method of determining adipose tissue mass is not a terminal procedure; thus, this methodology may be particularly useful for the longitudinal assessment of the effects of drug intervention on adipose tissue depot mass.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Envelhecimento , Animais , Peso Corporal , Masculino , Camundongos , Camundongos Endogâmicos , Obesidade/diagnóstico por imagem , Tamanho do Órgão , Reprodutibilidade dos Testes , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...