Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 134(6): 1520-1529, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167262

RESUMO

Skeletal muscles bulge when they contract. These three-dimensional shape changes, coupled with fiber rotation, influence a muscle's mechanical performance by uncoupling fiber velocity from muscle belly velocity (i.e., gearing). Muscle shape change and gearing are likely mediated by the interaction between internal muscle properties and contractile forces. Muscles with greater stiffness and intermuscular fat, due to aging or disuse, may limit a muscle's ability to bulge in width, subsequently causing higher gearing. The aim of this study was to determine the influence of internal muscle properties on shape change, fiber rotation, and gearing in the medial (MG) and lateral gastrocnemii (LG) during isometric plantar flexion contractions. Multimodal imaging techniques were used to measure muscle shear modulus, intramuscular fat, and fat-corrected physiological cross-sectional area (PCSA) at rest, as well as synchronous muscle architecture changes during submaximal and maximal contractions in the MG and LG of 20 young (24 ± 3 yr) and 13 older (70 ± 4 yr) participants. Fat-corrected PCSA was positively associated with fiber rotation, gearing, and changes in thickness during submaximal contractions, but it was negatively associated with changes in thickness at maximal contractions. Muscle stiffness and intramuscular fat were related to muscle bulging and reduced fiber rotation, respectively, but only at high forces. Furthermore, the MG and LG had varied internal muscle properties, which may relate to the differing shape changes, fiber rotations, and gearing behaviors observed at each contraction level. These results indicate that internal muscle properties may play an important role in mediating in vivo muscle shape change and gearing, especially during high-force contractions.NEW & NOTEWORTHY Here, we measured internal muscle properties in vivo to determine their influence on the varying shape change and gearing behaviors in the synergistic gastrocnemii muscles. These relationships have previously only been hypothesized or examined within isolated muscles during supramaximal contractions. Our results contribute to a more comprehensive understanding of the factors that influence a muscle's mechanical response to force with implications for preventing or treating muscle deficits associated with aging, disease, and disuse.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Fenômenos Mecânicos , Contração Isométrica/fisiologia , Envelhecimento/fisiologia
2.
J Biomech ; 135: 111033, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276511

RESUMO

The study of muscle coordination requires knowledge of the force produced by individual muscles, which can be estimated using Hill-type models. Predicted forces from Hill-type models are sensitive to the muscle's maximal force-generating capacity (Fmax), however, to our knowledge, no study has investigated the effect of different Fmax personalization methods on predicted muscle forces. The aim of this study was to determine the influence of two personalization methods on predicted force-sharing strategies between the human gastrocnemii during walking. Twelve participants performed a walking protocol where we estimated muscle activation using surface electromyography and fascicle length, velocity, and pennation angle using B-mode ultrasound to inform the Hill-type model. Fmax was determined using either a scaling method or experimental method. The scaling method used anthropometric scaling to determine both muscle volume and fiber length, which were used to estimate the Fmax of the gastrocnemius medialis and lateralis. The experimental method used muscle volume and fascicle length obtained from magnetic resonance imaging and diffusion tensor imaging, respectively. We found that the scaling and the experimental method predicted similar gastrocnemii force-sharing strategies at the group level (mean over the participants). However, substantial differences between methods in predicted force-sharing strategies was apparent for some participants revealing the limited ability of the scaling method to predict force-sharing strategies at the level of individual participants. Further personalization of muscle models using in vivo experimental data from imaging techniques is therefore likely important when using force predictions to inform the diagnosis and management of neurological and orthopedic conditions.


Assuntos
Imagem de Tensor de Difusão , Músculo Esquelético , Eletromiografia , Humanos , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Ultrassonografia , Caminhada/fisiologia
3.
J Anat ; 240(1): 131-144, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411299

RESUMO

Assessment of regional muscle architecture is primarily done through the study of animals, human cadavers, or using b-mode ultrasound imaging. However, there remain several limitations to how well such measurements represent in vivo human whole muscle architecture. In this study, we developed an approach using diffusion tensor imaging and magnetic resonance imaging to quantify muscle fibre lengths in different muscle regions along a muscle's length and width. We first tested the between-day reliability of regional measurements of fibre lengths in the medial (MG) and lateral gastrocnemius (LG) and found good reliability for these measurements (intraclass correlation coefficient [ICC] = 0.79 and ICC = 0.84, respectively). We then applied this approach to a group of 32 participants including males (n = 18), females (n = 14), young (24 ± 4 years) and older (70 ± 2 years) adults. We assessed the differences in regional muscle fibre lengths between different muscle regions and between individuals. Additionally, we compared regional muscle fibre lengths between sexes, age groups, and muscles. We found substantial variability in fibre lengths between different regions within the same muscle and between the MG and the LG across individuals. At the group level, we found no difference in mean muscle fibre length between males and females, nor between young and older adults, or between the MG and the LG. The high variability in muscle fibre lengths between different regions within the same muscle, possibly expands the functional versatility of the muscle for different task requirements. The high variability between individuals supports the use of subject-specific measurements of muscle fibre lengths when evaluating muscle function.


Assuntos
Imagem de Tensor de Difusão , Músculo Esquelético , Animais , Imagem de Tensor de Difusão/métodos , Feminino , Imageamento por Ressonância Magnética , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes
4.
J Biomech ; 129: 110823, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34736086

RESUMO

When muscles contract and change length, they also bulge in thickness and/or width. These shape changes extend the functional range of skeletal muscle by allowing individual muscle fibres to shorten at different velocities than the whole muscle. Age-related differences in muscle architecture and tissue properties influence how older muscles change shape and architecture during contractions, yet this remains unexplored in active older adults. The aim of this study was to quantify and compare in vivo muscle architecture and shape changes in the medial (MG) and lateral (LG) gastrocnemii of active younger and older adults during isometric plantarflexion contractions. Fifteen younger (21 ±â€¯2y) and 15 older (70 ±â€¯3y) participants performed contractions at 20%, 40%, 60%, 80%, and 100% of maximum voluntary contraction (MVC). B-mode ultrasound was used to measure fascicle length, pennation angle and muscle thickness in MG and LG. We found no influence of age on changes in normalized fascicle length and thickness, or absolute change in pennation angle during contractions. With increasing contraction level, MG and LG fascicle shortening (P < 0.001) and rotation (P < 0.001) increased. However, the change in muscle thickness increased at higher contraction levels in LG, and not MG. Similarly, increased changes in pennation angle were associated with increased muscle thickness in LG, but not MG at 80% and 100% MVC. These results suggest that (1) gastrocnemii shape changes are similar in active older and younger adults at matched levels of effort, and (2) the relationship between pennation angle and muscle thickness can differ between synergistics (LG and MG) and across contraction levels.


Assuntos
Contração Isométrica , Músculo Esquelético , Idoso , Humanos , Contração Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético/diagnóstico por imagem , Rotação , Ultrassonografia
5.
Exp Gerontol ; 156: 111594, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673171

RESUMO

With aging comes reductions in the quality and size of skeletal muscle. These changes influence the force-generating capacity of skeletal muscle and contribute to movement deficits that accompany aging. Although declines in strength remain a significant barrier to mobility in older adults, the association between age-related changes in muscle structure and function remain unresolved. In this study, we compared age-related differences in (i) muscle volume and architecture, (ii) the quantity and distribution of intramuscular fat, and (iii) muscle shear modulus (an index of stiffness) in the triceps surae in 21 younger (24.6 ± 4.3 years) and 15 older (70.4 ± 2.4 years) healthy adults. Additionally, we explored the relationship between muscle volume, architecture, intramuscular fat and ankle plantar flexion strength in young and older adults. Magnetic resonance imaging was used to determine muscle volume and intramuscular fat content. B-mode ultrasound was used to quantify muscle architecture, shear-wave elastography was used to measure shear modulus, and ankle strength was measured during maximal isometric plantar flexion contractions. We found that older adults displayed higher levels of intramuscular fat yet similar muscle volumes in the medial (MG) and lateral gastrocnemius (LG) and soleus, compared to younger adults. These age-related higher levels of intramuscular fat were associated with lower muscle shear modulus in the LG and MG. We also found that muscle physiological cross-sectional area (PCSA) that accounted for age-associated differences in intramuscular fat showed a modest increase in its association with ankle strength compared to PCSA that did not account for fat content. This highlights that skeletal muscle fat infiltration plays a role in age-related strength deficits, but does not fully explain the age-related loss in muscle strength, suggesting that other factors play a more significant role.


Assuntos
Contração Isométrica , Músculo Esquelético , Idoso , Articulação do Tornozelo/fisiologia , Humanos , Contração Isométrica/fisiologia , Perna (Membro) , Força Muscular/fisiologia , Músculo Esquelético/fisiologia
6.
J Exp Biol ; 224(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34096594

RESUMO

The functional difference between the medial gastrocnemius (MG) and lateral gastrocnemius (LG) during walking in humans has not yet been fully established. Although evidence highlights that the MG is activated more than the LG, the link with potential differences in mechanical behavior between these muscles remains unknown. In this study, we aimed to determine whether differences in activation between the MG and LG translate into different fascicle behavior during walking. Fifteen participants walked at their preferred speed under two conditions: 0% and 10% incline treadmill grade. We used surface electromyography and B-mode ultrasound to estimate muscle activation and fascicle dynamics in the MG and LG. We observed a higher normalized activation in the MG than in the LG during stance, which did not translate into greater MG normalized fascicle shortening. However, we observed significantly less normalized fascicle lengthening in the MG than in the LG during early stance, which matched with the timing of differences in activation between muscles. This resulted in more isometric behavior of the MG, which likely influences the muscle-tendon interaction and enhances the catapult-like mechanism in the MG compared with the LG. Nevertheless, this interplay between muscle activation and fascicle behavior, evident at the group level, was not observed at the individual level, as revealed by the lack of correlation between the MG-LG differences in activation and MG-LG differences in fascicle behavior. The MG and LG are often considered as equivalent muscles but the neuromechanical differences between them suggest that they may have distinct functional roles during locomotion.


Assuntos
Músculo Esquelético , Caminhada , Fenômenos Biomecânicos , Eletromiografia , Humanos , Contração Muscular , Tendões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...