Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
ACS Infect Dis ; 10(6): 2222-2238, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38717116

RESUMO

Vector-borne parasitic diseases (VBPDs) pose a significant threat to public health on a global scale. Collectively, Human African Trypanosomiasis (HAT), Leishmaniasis, and Malaria threaten millions of people, particularly in developing countries. Climate change might alter the transmission and spread of VBPDs, leading to a global burden of these diseases. Thus, novel agents are urgently needed to expand therapeutic options and limit the spread of drug-resistant parasites. Herein, we report the development of broad-spectrum antiparasitic agents by screening a known library of antileishmanial and antimalarial compounds toward Trypanosoma brucei (T. brucei) and identifying a 1,3,4-oxadiazole derivative (19) as anti-T. brucei hit with predicted blood-brain barrier permeability. Subsequently, extensive structure-activity-relationship studies around the lipophilic tail of 19 led to a potent antitrypanosomal and antimalarial compound (27), with moderate potency also toward Leishmania infantum (L. infantum) and Leishmania tropica. In addition, we discovered a pan-active antiparasitic molecule (24), showing low-micromolar IC50s toward T. brucei and Leishmania spp. promastigotes and amastigotes, and nanomolar IC50 against Plasmodium falciparum, together with high selectivity for the parasites over mammalian cells (THP-1). Early ADME-toxicity assays were used to assess the safety profile of the compounds. Overall, we characterized 24 and 27, bearing the 1,3,4-oxadiazole privileged scaffold, as broad-spectrum low-toxicity agents for the treatment of VBPDs. An alkyne-substituted chemical probe (30) was synthesized and will be utilized in proteomics experiments aimed at deconvoluting the mechanism of action in the T. brucei parasite.


Assuntos
Descoberta de Drogas , Oxidiazóis , Trypanosoma brucei brucei , Oxidiazóis/farmacologia , Oxidiazóis/química , Trypanosoma brucei brucei/efeitos dos fármacos , Humanos , Relação Estrutura-Atividade , Antiparasitários/farmacologia , Antiparasitários/química , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Leishmania infantum/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Antiprotozoários/química
2.
Cancers (Basel) ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35954391

RESUMO

Drug resistance limits the effectiveness of oesophageal adenocarcinoma (OAC) chemotherapies, leading to a poor prognosis for this disease. Elucidation of the underlying resistance mechanisms is key to enabling the identification of more effective treatments. This study, therefore, aims to identify novel therapeutic and/or chemotherapy sensitising drug targets in OAC. Transcriptional data from a cohort of 273 pre-treatment OAC biopsies, from patients who received neoadjuvant chemotherapy followed by surgical resection, were analysed using gene set enrichment analysis (GSEA) to determine differential gene expression between responding and non-responding OAC tumours. From this, 80 genes were selected for high-throughput siRNA screening in OAC cell lines with or without standard chemotherapy treatment. In parallel, cell viability assays were performed using a panel of FDA-approved drugs and combination index (CI) values were calculated to evaluate drug synergy with standard chemotherapy. Mechanisms of synergy were investigated using western blot, propidium iodide flow cytometry, and proliferation assays. Taken together, the screens identified that targeting Src, using either siRNA or the small molecule inhibitor dasatinib, enhanced the efficacy of chemotherapy in OAC cells. Further in vitro functional analysis confirmed Src inhibition to be synergistic with standard OAC chemotherapies, 5-fluorouracil (5-FU), and cisplatin (CDDP). In conclusion, a compound screen together with a functional genomic approach identified Src as a potential chemosensitising target in OAC, which could be assessed in a clinical study for poor prognosis OAC patients.

3.
Sci Data ; 9(1): 405, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831315

RESUMO

Worldwide, there are intensive efforts to identify repurposed drugs as potential therapies against SARS-CoV-2 infection and the associated COVID-19 disease. To date, the anti-inflammatory drug dexamethasone and (to a lesser extent) the RNA-polymerase inhibitor remdesivir have been shown to be effective in reducing mortality and patient time to recovery, respectively, in patients. Here, we report the results of a phenotypic screening campaign within an EU-funded project (H2020-EXSCALATE4COV) aimed at extending the repertoire of anti-COVID therapeutics through repurposing of available compounds and highlighting compounds with new mechanisms of action against viral infection. We screened 8702 molecules from different repurposing libraries, to reveal 110 compounds with an anti-cytopathic IC50 < 20 µM. From this group, 18 with a safety index greater than 2 are also marketed drugs, making them suitable for further study as potential therapies against COVID-19. Our result supports the idea that a systematic approach to repurposing is a valid strategy to accelerate the necessary drug discovery process.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos
4.
Nat Commun ; 13(1): 3055, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650266

RESUMO

Melanoma is a highly plastic tumor characterized by dynamic interconversion of different cell identities depending on the biological context. Melanoma cells with high expression of the H3K4 demethylase KDM5B (JARID1B) rest in a slow-cycling, yet reversible persister state. Over time, KDM5Bhigh cells can promote rapid tumor repopulation with equilibrated KDM5B expression heterogeneity. The cellular identity of KDM5Bhigh persister cells has not been studied so far, missing an important cell state-directed treatment opportunity in melanoma. Here, we have established a doxycycline-titratable system for genetic induction of permanent intratumor expression of KDM5B and screened for chemical agents that phenocopy this effect. Transcriptional profiling and cell functional assays confirmed that the dihydropyridine 2-phenoxyethyl 4-(2-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydro-quinoline-3-carboxylate (termed Cpd1) supports high KDM5B expression and directs melanoma cells towards differentiation along the melanocytic lineage and to cell cycle-arrest. The high KDM5B state additionally prevents cell proliferation through negative regulation of cytokinetic abscission. Moreover, treatment with Cpd1 promoted the expression of the melanocyte-specific tyrosinase gene specifically sensitizing melanoma cells for the tyrosinase-processed antifolate prodrug 3-O-(3,4,5-trimethoxybenzoyl)-(-)-epicatechin (TMECG). In summary, our study provides proof-of-concept for a dual hit strategy in melanoma, in which persister state-directed transitioning limits tumor plasticity and primes melanoma cells towards lineage-specific elimination.


Assuntos
Melanoma , Monofenol Mono-Oxigenase , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Melanócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia
5.
Cryobiology ; 103: 57-69, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582849

RESUMO

The gold standard in cryopreservation is still conventional slow freezing of single cells or small aggregates in suspension, although major cell loss and limitation to non-specialised cell types in stem cell technology are known drawbacks. The requirement for rapidly available therapeutic and diagnostic cell types is increasing constantly. In the case of human induced pluripotent stem cells (hiPSCs) or their derivates, more sophisticated cryopreservation protocols are needed to address this demand. These should allow a preservation in their physiological, adherent state, an efficient re-cultivation and upscaling upon thawing towards high-throughput applications in cell therapies or disease modelling in drug discovery. Here, we present a novel vitrification-based method for adherent hiPSCs, designed for automated handling by microfluidic approaches and with ready-to-use potential e.g. in suspension-based bioreactors after thawing. Modifiable alginate microcarriers serve as a growth surface for adherent hiPSCs that were cultured in a suspension-based bioreactor and subsequently cryopreserved via droplet-based vitrification in comparison to conventional slow freezing. Soft (0.35%) versus stiff (0.65%) alginate microcarriers in concert with adhesion time variation have been examined. Findings revealed specific optimal conditions leading to an adhesion time and growth surface (matrix) elasticity dependent hypothesis on cryo-induced damaging regimes for adherent cell types. Deviations from the found optimum parameters give rise to membrane ruptures assessed via SEM and major cell loss after adherent vitrification. Applying the optimal conditions, droplet-based vitrification was superior to conventional slow freezing. A decreased microcarrier stiffness was found to outperform stiffer material regarding cell recovery, whereas the stemness characteristics of rewarmed hiPSCs were preserved.


Assuntos
Células-Tronco Pluripotentes Induzidas , Vitrificação , Alginatos , Criopreservação/métodos , Elasticidade , Congelamento , Humanos
6.
J Med Chem ; 64(15): 11169-11182, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34269579

RESUMO

Chromone-3-phenylcarboxamides (Crom-1 and Crom-2) were identified as potent, selective, and reversible inhibitors of human monoamine oxidase B (hMAO-B). Since they exhibit some absorption, distribution, metabolism, and excretion (ADME)-toxicity liabilities, new derivatives were synthesized to map the chemical structural features that compose the pharmacophore, a process vital for lead optimization. Structure-activity relationship data, supported by molecular docking studies, provided a rationale for the contribution of the heterocycle's rigidity, the carbonyl group, and the benzopyran heteroatom for hMAO-B inhibitory activity. From the study, N-(3-chlorophenyl)-4H-thiochromone-3-carboxamide (31) (hMAO-B IC50 = 1.52 ± 0.15 nM) emerged as a reversible tight binding inhibitor with an improved pharmacological profile. In in vitro ADME-toxicity studies, compound 31 showed a safe cytotoxicity profile in Caco-2, SH-SY5Y, HUVEC, HEK-293, and MCF-7 cells, did not present cardiotoxic effects, and did not affect P-gp transport activity. Compound 31 also protected SH-SY5Y cells from iron(III)-induced damage. Collectively, these studies highlighted compound 31 as the first-in-class and a suitable candidate for in vivo preclinical investigation.


Assuntos
Cromonas/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Linhagem Celular , Cromonas/síntese química , Cromonas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Relação Estrutura-Atividade
7.
Sci Data ; 8(1): 70, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637768

RESUMO

SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic, in which acute respiratory infections are associated with high socio-economic burden. We applied high-content screening to a well-defined collection of 5632 compounds including 3488 that have undergone previous clinical investigations across 600 indications. The compounds were screened by microscopy for their ability to inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2. The primary screen identified 258 hits that inhibited cytopathicity by more than 75%, most of which were not previously known to be active against SARS-CoV-2 in vitro. These compounds were tested in an eight-point dose response screen using the same image-based cytopathicity readout. For the 67 most active molecules, cytotoxicity data were generated to confirm activity against SARS-CoV-2. We verified the ability of known inhibitors camostat, nafamostat, lopinavir, mefloquine, papaverine and cetylpyridinium to reduce the cytopathic effects of SARS-CoV-2, providing confidence in the validity of the assay. The high-content screening data are suitable for reanalysis across numerous drug classes and indications and may yield additional insights into SARS-CoV-2 mechanisms and potential therapeutic strategies.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos , SARS-CoV-2/efeitos dos fármacos , Benzamidinas , COVID-19 , Células CACO-2 , Cetilpiridínio , Avaliação Pré-Clínica de Medicamentos , Ésteres , Guanidinas , Humanos , Lopinavir , Mefloquina , Papaverina
8.
Mol Pharmacol ; 99(3): 184-196, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33483427

RESUMO

The HIV protease inhibitor nelfinavir is currently being analyzed for repurposing as an anticancer drug for many different cancers because it exerts manifold off-target protein interactions, finally resulting in cancer cell death. Xenosensing pregnane X receptor (PXR), which also participates in the control of cancer cell proliferation and apoptosis, was previously shown to be activated by nelfinavir; however, the exact molecular mechanism is still unknown. The present study addresses the effects of nelfinavir and its major and pharmacologically active metabolite nelfinavir hydroxy-tert-butylamide (M8) on PXR to elucidate the underlying molecular mechanism. Molecular docking suggested direct binding to the PXR ligand-binding domain, which was confirmed experimentally by limited proteolytic digestion and competitive ligand-binding assays. Concentration-response analyses using cellular transactivation assays identified nelfinavir and M8 as partial agonists with EC50 values of 0.9 and 7.3 µM and competitive antagonists of rifampin-dependent induction with IC50 values of 7.5 and 25.3 µM, respectively. Antagonism exclusively resulted from binding into the PXR ligand-binding pocket. Impaired coactivator recruitment by nelfinavir as compared with the full agonist rifampin proved to be the underlying mechanism of both effects on PXR. Physiologic relevance of nelfinavir-dependent modulation of PXR activity was investigated in respectively treated primary human hepatocytes, which showed differential induction of PXR target genes and antagonism of rifampin-induced ABCB1 and CYP3A4 gene expression. In conclusion, we elucidate here the molecular mechanism of nelfinavir interaction with PXR. It is hypothesized that modulation of PXR activity may impact the anticancer effects of nelfinavir. SIGNIFICANCE STATEMENT: Nelfinavir, which is being investigated for repurposing as an anticancer medication, is shown here to directly bind to human pregnane X receptor (PXR) and thereby act as a partial agonist and competitive antagonist. Its major metabolite nelfinavir hydroxy-tert-butylamide exerts the same effects, which are based on impaired coactivator recruitment. Nelfinavir anticancer activity may involve modulation of PXR, which itself is discussed as a therapeutic target in cancer therapy and for the reversal of chemoresistance.


Assuntos
Hepatócitos/metabolismo , Nelfinavir/análogos & derivados , Nelfinavir/farmacologia , Receptor de Pregnano X/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Sítios de Ligação , Citocromo P-450 CYP3A/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Nelfinavir/química , Receptor de Pregnano X/agonistas , Receptor de Pregnano X/antagonistas & inibidores , Receptor de Pregnano X/química , Cultura Primária de Células
9.
Bioinformatics ; 36(24): 5703-5705, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33346828

RESUMO

MOTIVATION: The COVID-19 pandemic has prompted an impressive, worldwide response by the academic community. In order to support text mining approaches as well as data description, linking and harmonization in the context of COVID-19, we have developed an ontology representing major novel coronavirus (SARS-CoV-2) entities. The ontology has a strong scope on chemical entities suited for drug repurposing, as this is a major target of ongoing COVID-19 therapeutic development. RESULTS: The ontology comprises 2270 classes of concepts and 38 987 axioms (2622 logical axioms and 2434 declaration axioms). It depicts the roles of molecular and cellular entities in virus-host interactions and in the virus life cycle, as well as a wide spectrum of medical and epidemiological concepts linked to COVID-19. The performance of the ontology has been tested on Medline and the COVID-19 corpus provided by the Allen Institute. AVAILABILITYAND IMPLEMENTATION: COVID-19 Ontology is released under a Creative Commons 4.0 License and shared via https://github.com/covid-19-ontology/covid-19. The ontology is also deposited in BioPortal at https://bioportal.bioontology.org/ontologies/COVID-19. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

10.
Cell Biol Toxicol ; 37(2): 229-243, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32564278

RESUMO

The embryonic stem cell test (EST) represents the only validated and accepted in vitro system for the detection and classification of compounds according to their developmental and reproductive teratogenic potency. The widespread implementation of the EST, however, in particular for routine application in pharmaceutical development, has not been achieved so far. Several drawbacks still limit the high-throughput screening of potential drug candidates in this format: The long assay period, the use of non-homogeneous viability assays, the low throughput analysis of marker protein expression and the compatibility of the assay procedures to automation. We have therefore introduced several advancements into the EST workflow: A reduction of the assay period, an introduction of homogeneous viability assays, and a straightforward analysis of marker proteins by flow cytometry and high content imaging to assess the impact of small molecules on differentiation capacity. Most importantly, essential parts of the assay procedure have been adapted to lab automation in 96-well format, thus enabling the interrogation of several compounds in parallel. In addition, extensive investigations were performed to explore the predictive capacity of this next-generation EST, by testing a set of well-known embryotoxicants that encompasses the full range of chemical-inherent embryotoxic potencies possible. Due to these significant improvements, the augmented workflow provides a basis for a sensitive, more rapid, and reproducible high throughput screening compatible platform to predict in vivo developmental toxicity from in vitro data which paves the road towards application in an industrial setting. Graphical abstract •The embryonic stem cell test to predict teratogenicity was made automation-compatible. •Several key improvements to the assay procedure have been introduced to increase performance. •The workflow was adapted to human iPS cells and isogenic fibroblast donor cells.


Assuntos
Desenvolvimento Embrionário , Ensaios de Triagem em Larga Escala , Células-Tronco Pluripotentes/metabolismo , Reprodução , Bibliotecas de Moléculas Pequenas/farmacologia , Testes de Toxicidade , Trifosfato de Adenosina/farmacologia , Animais , Automação , Bioensaio , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Corpos Embrioides/efeitos dos fármacos , Corpos Embrioides/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Células NIH 3T3 , Células-Tronco Pluripotentes/efeitos dos fármacos , Reprodução/efeitos dos fármacos
11.
Sci Total Environ ; 717: 134743, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836225

RESUMO

Bisphenol A (BPA) is a high production volume chemical with a broad application spectrum. As an endocrine disrupting chemical, mainly by modulation of nuclear receptors (NRs), BPA has an adverse impact on organisms and is identified as a substance of very high concern under the European REACH regulation. Various BPA substitution candidates have been developed in recent years, however, information concerning the endocrine disrupting potential of these substances is still incomplete or missing. In this study, we intended to investigate the endocrine potential of BPA substitution candidates used in environmentally relevant applications such as thermal paper or epoxy resins. Based on an extensive literature and patent search, 33 environmentally relevant BPA substitution candidates were identified. In order to evaluate the endocrine potential of the BPA replacements, a screening cascade consisting of biochemical and cell-based assays was employed to investigate substance binding to the NRs estrogen receptor α and ß, as well as androgen receptor, co-activator recruitment and NR-mediated reporter gene activation. In addition, a computational docking approach for retrospective prediction of receptor binding was carried out. Our results show that some BPA substitution candidates, for which so far no or only very few data were available, possess a substantial endocrine disrupting potential (TDP, BPZ), while several substances (BPS, D-8, DD70, DMP-OH, TBSA, D4, CBDO, ISO, VITC, DPA, and DOPO) did not reveal any NR binding.


Assuntos
Compostos Benzidrílicos/química , Fenóis/química , Disruptores Endócrinos , Receptores Androgênicos , Estudos Retrospectivos
12.
Arch Toxicol ; 93(8): 2247-2264, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31312845

RESUMO

Prediction of drug interactions, based on the induction of drug disposition, calls for the identification of chemicals, which activate xenosensing nuclear receptors. Constitutive androstane receptor (CAR) is one of the major human xenosensors; however, the constitutive activity of its reference variant CAR1 in immortalized cell lines complicates the identification of agonists. The exclusively ligand-dependent isoform CAR3 represents an obvious alternative for screening of CAR agonists. As CAR3 is even more abundant in human liver than CAR1, identification of its agonists is also of pharmacological value in its own right. We here established a cellular high-throughput screening assay for CAR3 to identify ligands of this isoform and to analyse its suitability for identifying CAR ligands in general. Proof-of-concept screening of 2054 drug-like compounds at 10 µM resulted in the identification of novel CAR3 agonists. The CAR3 assay proved to detect the previously described CAR1 ligands in the screened libraries. However, we failed to detect CAR3-selective compounds, as the four novel agonists, which were selected for further investigations, all proved to activate CAR1 in different cellular and in vitro assays. In primary human hepatocytes, the compounds preferentially induced the expression of the prototypical CAR target gene CYP2B6. Failure to identify CAR3-selective compounds was investigated by molecular modelling, which showed that the isoform-specific insertion of five amino acids did not impact on the ligand binding pocket but only on heterodimerization with retinoid X receptor. In conclusion, we demonstrate here the usability of CAR3 for screening compound libraries for the presence of CAR agonists.


Assuntos
Hepatócitos/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/química , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Clopidogrel/farmacologia , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Hepatócitos/fisiologia , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estudo de Prova de Conceito , Isoformas de Proteínas , Transporte Proteico/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores X de Retinoides/química , Receptores X de Retinoides/metabolismo
13.
SLAS Discov ; 24(3): 346-361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30784368

RESUMO

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion-toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


Assuntos
Descoberta de Drogas/métodos , Tripanossomicidas/análise , Tripanossomicidas/farmacologia , Tripanossomíase/tratamento farmacológico , Produtos Biológicos/química , Humanos , Relação Estrutura-Atividade , Tripanossomicidas/uso terapêutico
14.
Stem Cell Res ; 33: 120-124, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30343101

RESUMO

Two isogenic hiPSC lines, ZIPi013-B and ZIPi013-E, were generated by reprogramming fetal dermal fibroblasts with episomal vectors. Previously, the same fetal fibroblasts were reprogrammed multiple times in a study comparing other reprogramming methods. As a consequence, the genomes have been sequenced multiple times. Both new cell lines offer the opportunity to study basic stem cell biology and model human disease. They can be applied as reference cell lines for creating isogenic clones bearing disease mutations on a well-characterized genomic background, as both cell lines have demonstrated excellent differentiation capacity in multiple labs. Resource table.


Assuntos
Feto/fisiopatologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Feminino , Fibroblastos/citologia , Humanos
15.
Am J Hum Genet ; 102(4): 557-573, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29576218

RESUMO

Mitochondrial disorders causing neurodegeneration in childhood are genetically heterogeneous, and the underlying genetic etiology remains unknown in many affected individuals. We identified biallelic variants in PMPCB in individuals of four families including one family with two affected siblings with neurodegeneration and cerebellar atrophy. PMPCB encodes the catalytic subunit of the essential mitochondrial processing protease (MPP), which is required for maturation of the majority of mitochondrial precursor proteins. Mitochondria isolated from two fibroblast cell lines and induced pluripotent stem cells derived from one affected individual and differentiated neuroepithelial stem cells showed reduced PMPCB levels and accumulation of the processing intermediate of frataxin, a sensitive substrate for MPP dysfunction. Introduction of the identified PMPCB variants into the homologous S. cerevisiae Mas1 protein resulted in a severe growth and MPP processing defect leading to the accumulation of mitochondrial precursor proteins and early impairment of the biogenesis of iron-sulfur clusters, which are indispensable for a broad range of crucial cellular functions. Analysis of biopsy materials of an affected individual revealed changes and decreased activity in iron-sulfur cluster-containing respiratory chain complexes and dysfunction of mitochondrial and cytosolic Fe-S cluster-dependent enzymes. We conclude that biallelic mutations in PMPCB cause defects in MPP proteolytic activity leading to dysregulation of iron-sulfur cluster biogenesis and triggering a complex neurological phenotype of neurodegeneration in early childhood.


Assuntos
Domínio Catalítico/genética , Metaloendopeptidases/genética , Mutação/genética , Degeneração Neural/genética , Criança , Pré-Escolar , Derme/patologia , Transporte de Elétrons , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Ferro-Enxofre/genética , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Linhagem , Proto-Oncogene Mas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Peptidase de Processamento Mitocondrial
16.
Arch Toxicol ; 92(4): 1435-1451, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29356861

RESUMO

Activation of pregnane X receptor (PXR) results in the induction of first-pass metabolism and drug efflux. Hereby, PXR may cause adverse drug reactions or therapeutic failure of drugs. PXR inhibition is thus an attractive option to minimise adverse effects or to improve therapeutic efficiencies; however, only a limited number of antagonists have been identified so far. We performed a cell-based high-throughput screen to identify PXR antagonists, using a library of approved and investigational drugs. Two approved drugs, pimecrolimus and pazopanib, emerged as novel potent antagonists of PXR activation, with IC50 values of 1.2 and 4.1 µM, respectively. We further characterised these with respect to receptor specificity, assembly of the PXR ligand-binding domain (LBD) and interactions with co-factors. In vitro and in silico assays were carried out to identify the site(s) of interaction with the PXR LBD. Primary human hepatocytes were used to investigate antagonism of the induction of endogenous PXR target genes. Pimecrolimus and pazopanib did not affect the transcriptional activity of other nuclear receptors. Both induced the release of co-repressor from PXR and likewise interfered with agonist-induced recruitment of co-activator. Cumulative evidence from cellular and in vitro assays, as well as molecular docking, suggested additional or exclusive binding outside the PXR ligand-binding pocket for both. The compounds differentially antagonised the induction of PXR-regulated genes by rifampicin in primary human hepatocytes. In conclusion, we here have identified two approved drugs as novel potent PXR inhibitors with differential receptor interaction profiles and gene selectivity in primary human hepatocytes.


Assuntos
Hepatócitos/metabolismo , Receptor de Pregnano X/antagonistas & inibidores , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Tacrolimo/análogos & derivados , Linhagem Celular , Aprovação de Drogas , Células Hep G2 , Hepatócitos/citologia , Humanos , Indazóis , Simulação de Acoplamento Molecular , Ligação Proteica , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Tacrolimo/administração & dosagem , Tacrolimo/farmacologia
17.
Mol Metab ; 6(7): 640-650, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28702321

RESUMO

OBJECTIVES: Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can generate any given cell type in the human body. One challenge for cell-replacement therapy is the efficient differentiation and expansion of large quantities of progenitor cells from pluripotent stem cells produced under good manufacturing practice (GMP). FOXA2 and SOX17 double positive definitive endoderm (DE) progenitor cells can give rise to all endoderm-derived cell types in the thymus, thyroid, lung, pancreas, liver, and gastrointestinal tract. FOXA2 is a pioneer transcription factor in DE differentiation that is also expressed and functionally required during pancreas development and islet cell homeostasis. Current differentiation protocols can successfully generate endoderm; however, generation of mature glucose-sensitive and insulin-secreting ß-cells is still a challenge. As a result, it is of utmost importance to screen for small molecules that can improve DE and islet cell differentiation for cell-replacement therapy for diabetic patients. METHODS: The aim of this study was to identify and validate small molecules that can induce DE differentiation and further enhance pancreatic progenitor differentiation. Therefore, we developed a large scale, high-content screen for testing a chemical library of 23,406 small molecules to identify compounds that induce FoxA2 in mouse embryonic stem cells (mESCs). RESULTS: Based on our high-content screen algorithm, we selected 84 compounds that directed differentiation of mESCs towards the FoxA2 lineage. Strikingly, we identified ROCK inhibition (ROCKi) as a novel mechanism of endoderm induction in mESCs and hESCs. DE induced by the ROCK inhibitor Fasudil efficiently gives rise to PDX1+ pancreatic progenitors from hESCs. CONCLUSION: Taken together, DE induction by ROCKi can simplify and improve current endoderm and pancreatic differentiation protocols towards a GMP-grade cell product for ß-cell replacement.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Endoderma/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos , Transativadores/genética , Transativadores/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
18.
J Neuroimmunol ; 299: 53-58, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27725121

RESUMO

BACKGROUND: Clinical studies have suggested beneficial effects of exercise on cognitive function in ageing adults and neurodegenerative diseases such as dementia. Recent work indicates the same for progressive multiple sclerosis (MS), an inflammatory and degenerative disease of the central nervous system (CNS). The biological pathways associated with these effects are however not well understood. OBJECTIVE: In this randomized controlled study, we explored serum levels of the myokine Irisin, the neurotrophin brain-derived neurotrophic factor (BDNF) and Interleukin-6 (IL-6) during acute endurance exercise and over the course of a 9-weeks endurance exercise training period in n=42 patients with progressive MS. RESULTS: We detected a significant increase of BDNF levels in progressive MS patients after 30min of bicycling (p<0.001). However, there were no significant changes for baseline levels after 22 sessions of training. No significant effects of acute or prolonged exercise could be found for Irisin or Interleukin-6. CONCLUSION: Our results indicate that BDNF is strongly induced during acute exercise even in patients with progressive MS and advanced physical disability. Long-term effects of exercise programs on biological parameters (Irisin, BDNF, IL-6) were much less pronounced. Given the hypothesis-driven selection of a limited set of biological markers in this pilot study, future studies should use unbiased approaches in larger samples to obtain a comprehensive picture of the networks involved in exercise effects on neurological diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Exercício Físico/fisiologia , Fibronectinas/sangue , Interleucina-6/sangue , Esclerose Múltipla/sangue , Esclerose Múltipla/terapia , Adulto , Biomarcadores/sangue , Estudos de Coortes , Teste de Esforço/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
19.
J Med Chem ; 59(16): 7598-616, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27411733

RESUMO

Flavonoids represent a potential source of new antitrypanosomatidic leads. Starting from a library of natural products, we combined target-based screening on pteridine reductase 1 with phenotypic screening on Trypanosoma brucei for hit identification. Flavonols were identified as hits, and a library of 16 derivatives was synthesized. Twelve compounds showed EC50 values against T. brucei below 10 µM. Four X-ray crystal structures and docking studies explained the observed structure-activity relationships. Compound 2 (3,6-dihydroxy-2-(3-hydroxyphenyl)-4H-chromen-4-one) was selected for pharmacokinetic studies. Encapsulation of compound 2 in PLGA nanoparticles or cyclodextrins resulted in lower in vitro toxicity when compared to the free compound. Combination studies with methotrexate revealed that compound 13 (3-hydroxy-6-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one) has the highest synergistic effect at concentration of 1.3 µM, 11.7-fold dose reduction index and no toxicity toward host cells. Our results provide the basis for further chemical modifications aimed at identifying novel antitrypanosomatidic agents showing higher potency toward PTR1 and increased metabolic stability.


Assuntos
Produtos Biológicos/farmacologia , Flavonóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Linhagem Celular , Relação Dose-Resposta a Droga , Flavonóis/síntese química , Flavonóis/química , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
20.
Neurol Neuroimmunol Neuroinflamm ; 3(2): e214, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27144213

RESUMO

OBJECTIVE: To explore the possibility of using interleukin-17 (IL-17) production by CD4+ T cells in the CSF as a potential biomarker for cerebral vasculitis in stroke patients. METHODS: In this consecutive case study, we performed prospective analysis of CSF and blood in patients admitted to a university medical center with symptoms of stroke and suspected cerebral vasculitis. Flow cytometry was performed for intracellular detection of inflammatory cytokines in peripheral blood lymphocytes and expanded T cells from CSF. RESULTS: CSF CD4+ lymphocytes from patients with cerebral vasculitis showed significantly higher levels of the proinflammatory cytokine IL-17 compared to patients with stroke not due to vasculitis or with other, noninflammatory neurologic diseases. There was no difference in the production of interferon-γ in the CSF and no overall differences in the relative frequencies of peripheral immune cells. CONCLUSIONS: Intracellular IL-17 in CSF cells is potentially useful in discriminating cerebral vasculitis as a rare cause in patients presenting with ischemic stroke. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that an increased proportion of IL-17-producing CD4+ cells in CSF of patients presenting with stroke symptoms is indicative of cerebral vasculitis (sensitivity 73%, 95% confidence interval [CI] 39-94%; specificity 100%, 95% CI 74%-100%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...