Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775154

RESUMO

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of ß cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human ß cell line EndoC-ßH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LßT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic ß cells and pituitary gonadotropes.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Humanos , Animais , Camundongos , Masculino , Gonadotrofos/metabolismo , Feminino , Sítios de Splice de RNA/genética , Linhagem Celular , Insulina/metabolismo , Irmãos , Éxons/genética , Proteínas rab3 de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/genética , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/patologia
2.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37934802

RESUMO

Detection of circulating TSH is a first-line test of thyroid dysfunction, a major health problem (affecting about 5% of the population) that, if untreated, can lead to a significant deterioration of quality of life and adverse effects on multiple organ systems. Human TSH levels display both pulsatile and (nonpulsatile) basal TSH secretion patterns; however, the importance of these in regulating thyroid function and their decoding by the thyroid is unknown. Here, we developed a novel ultra-sensitive ELISA that allows precise detection of TSH secretion patterns with minute resolution in mouse models of health and disease. We characterized the patterns of ultradian TSH pulses in healthy, freely behaving mice over the day-night cycle. Challenge of the thyroid axis with primary hypothyroidism because of iodine deficiency, a major cause of thyroid dysfunction worldwide, results in alterations of TSH pulsatility. Induction in mouse models of sequential TSH pulses that mimic ultradian TSH profiles in periods of minutes were more efficient than sustained rises in basal TSH levels at increasing both thyroid follicle cAMP levels, as monitored with a genetically encoded cAMP sensor, and circulating thyroid hormone. Hence, this mouse TSH assay provides a powerful tool to decipher how ultradian TSH pulses encode thyroid outcomes and to uncover hidden parameters in the TSH-thyroid hormone set-point in health and disease.


Assuntos
Hipotireoidismo , Doenças da Glândula Tireoide , Camundongos , Humanos , Animais , Receptores da Tireotropina , Tireotropina , Tiroxina , Qualidade de Vida , Hormônios Tireóideos/farmacologia
3.
Front Endocrinol (Lausanne) ; 13: 918733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813647

RESUMO

Pancreatic islets are highly vascularized micro-organs ensuring whole body glucose homeostasis. Islet vascular cells play an integral part in sustaining adequate insulin release by beta cells. In particular, recent studies have demonstrated that islet pericytes regulate local blood flow velocity and are required for maintenance of beta cell maturity and function. In addition, increased metabolic demand accompanying obesity alters islet pericyte morphology. Here, we sought to explore the effects of metabolic stress on islet pericyte functional response to stimulation in a mouse model of type 2 diabetes, directly in the pancreas in vivo . We found that high fat diet induced islet pericyte hypertrophy without alterations in basal local blood flow. However, optogenetic stimulation of pericyte activity revealed impaired islet vascular responses, despite increased expression of genes encoding proteins directly or indirectly involved in cell contraction. These findings suggest that metabolic stress impinges upon islet pericyte function, which may contribute to beta cell failure during T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Animais , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Optogenética , Pericitos , Estresse Fisiológico
4.
Elife ; 102021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399538

RESUMO

In response to physiological demand, the pituitary gland generates new hormone-secreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells.


Assuntos
Comunicação Parácrina , Hipófise/fisiologia , Células-Tronco/fisiologia , Via de Sinalização Wnt , Animais , Diferenciação Celular , Proliferação de Células , Feminino , Masculino , Camundongos
5.
Diabetologia ; 63(9): 1822-1835, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32472193

RESUMO

AIMS/HYPOTHESIS: During pregnancy, maternal metabolic disease and hormonal imbalance may alter fetal beta cell development and/or proliferation, thus leading to an increased risk for developing type 2 diabetes in adulthood. Although thyroid hormones play an important role in fetal endocrine pancreas development, the impact of maternal hypothyroidism on glucose homeostasis in adult offspring remains poorly understood. METHODS: We investigated this using a mouse model of hypothyroidism, induced by administration of an iodine-deficient diet supplemented with propylthiouracil during gestation. RESULTS: Here, we show that, when fed normal chow, adult mice born to hypothyroid mothers were more glucose-tolerant due to beta cell hyperproliferation (two- to threefold increase in Ki67-positive beta cells) and increased insulin sensitivity. However, following 8 weeks of high-fat feeding, these offspring gained 20% more body weight, became profoundly hyperinsulinaemic (with a 50% increase in fasting insulin concentration), insulin-resistant and glucose-intolerant compared with controls from euthyroid mothers. Furthermore, altered glucose metabolism was maintained in a second generation of animals. CONCLUSIONS/INTERPRETATION: Therefore, gestational hypothyroidism induces long-term alterations in endocrine pancreas function, which may have implications for type 2 diabetes prevention in affected individuals.


Assuntos
Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Hipotireoidismo/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/embriologia , Complicações na Gravidez/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Antitireóideos/toxicidade , Proliferação de Células , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Hiperinsulinismo/metabolismo , Resistência à Insulina , Iodo/deficiência , Ilhotas Pancreáticas/metabolismo , Camundongos , Gravidez , Propiltiouracila/toxicidade , Estresse Fisiológico
6.
Endocrinology ; 160(10): 2271-2281, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31329247

RESUMO

Extensive efforts have been made to explore how the activities of multiple brain cells combine to alter physiology through imaging and cell-specific manipulation in different animal models. However, the temporal regulation of peripheral organs by the neuroendocrine factors released by the brain is poorly understood. We have established a suite of adaptable methodologies to interrogate in vivo the relationship of hypothalamic regulation with the secretory output of the pituitary gland, which has complex functional networks of multiple cell types intermingled with the vasculature. These allow imaging and optogenetic manipulation of cell activities in the pituitary gland in awake mouse models, in which both neuronal regulatory activity and hormonal output are preserved. These methodologies are now readily applicable for longitudinal studies of short-lived events (e.g., calcium signals controlling hormone exocytosis) and slowly evolving processes such as tissue remodeling in health and disease over a period of days to weeks.


Assuntos
Sinalização do Cálcio/fisiologia , Imagem Óptica/métodos , Hipófise/fisiologia , Vigília , Animais , Hormônio do Crescimento , Luz , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Hipófise/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...