Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38348492

RESUMO

Multiple competing hypotheses attribute the evolution of the suite of traits that distinguish primates from their closest relatives, including forward-facing eyes, which create a wide field of binocular vision, to specific behavioral and ecological factors. The grasp-leaping hypothesis suggests that the evolution of these traits in basal primates was driven by the demands of a form of leaping locomotion unique to primates. Whether the grasp-leaping hypothesis provides a viable mechanism for the evolution of primates' forward-facing eyes remains untested. To determine whether grasp-leaping locomotion may have contributed to driving the evolution of primates' forward-facing eyes, the importance of vision within the binocular field for this type of leaping was evaluated experimentally in Cheirogaleus medius, one of the cheirogaleid primate species considered reasonable living analogs of the earliest primates. Availability of binocular visual cues was experimentally restricted using a head-mounted blinder that narrowed the binocular visual field without altering the total visual field. Animals altered their launch behavior, reduced their horizontal leap speed, and were significantly more likely to select paths that offered the shortest available leaps when their binocular field was restricted. Restriction of binocular cue availability also significantly increased the probability of adverse landings even when statistically controlling for potentially confounding variables such as leap distance, horizontal leap speed, learning effects, etc. These results suggest a functional mechanism by which selection for improved grasp-leaping could also have contributed to the evolution of forward-facing eyes in the earliest crown primates.


Assuntos
Cheirogaleidae , Sinais (Psicologia) , Animais , Primatas , Locomoção , Campos Visuais , Visão Binocular
2.
J Hum Evol ; 188: 103456, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38325119

RESUMO

Forward-facing eyes with parallel optic axes, which provide a wide field of binocular vision and precise depth perception, are among the diagnostic features of crown primates; however, the adaptive significance of this feature remains contentious. Two of the most prominent primate-origins hypotheses propose that either foraging for fruit or nocturnal predation on insects created selective pressures that led to the evolution of diagnostic primate traits, including a wide binocular field. To determine whether either of these hypotheses provides a viable explanation for the evolution of primates' derived eye orientation, the importance of binocular depth cues for the two tasks invoked by these hypotheses was evaluated experimentally in Microcebus murinus and Cheirogaleus medius, cheirogaleids' considered reasonable living analogs of the earliest euprimates. Performance in grasping insects and fruit was evaluated when the animals made use of their full binocular visual field and when their binocular visual field was restricted using a helmet-mounted blinder. Restriction of the binocular field had no effect on fruit grasping performance; however, restriction of the binocular field resulted in a significant deficit in insect predation performance. Differences in behavioral variables also suggest that insect predation is a more visually demanding task than fruit foraging. These results support the role of insect predation, but not fruit foraging, in contributing to the selective pressures that led to the evolution of parallel optic axes and a wide binocular field in crown primates.


Assuntos
Sinais (Psicologia) , Frutas , Animais , Primatas , Visão Binocular , Insetos
3.
PLoS One ; 14(11): e0219411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770383

RESUMO

Scientific study of lemurs, a group of primates found only on Madagascar, is crucial for understanding primate evolution. Unfortunately, lemurs are among the most endangered animals in the world, so there is a strong impetus to maximize as much scientific data as possible from available physical specimens. MicroCT scanning efforts at Duke University have resulted in scans of more than 100 strepsirrhine cadavers representing 18 species from the Duke Lemur Center. An error study of the microCT scanner recovered less than 0.3% error at multiple resolution levels. Scans include specimen overviews and focused, high-resolution selections of complex anatomical regions (e.g., cranium, hands, feet). Scans have been uploaded to MorphoSource, an online digital repository for 3D data. As captive (but free ranging) individuals, these specimens have a wealth of associated information that is largely unavailable for wild populations, including detailed life history data. This digital collection maximizes the information obtained from rare and endangered animals with minimal degradation of the original specimens.


Assuntos
Espécies em Perigo de Extinção , Lemur/anatomia & histologia , Lemur/classificação , Strepsirhini/anatomia & histologia , Strepsirhini/classificação , Animais , Conservação dos Recursos Naturais , Bases de Dados Factuais , Galago/anatomia & histologia , Galago/classificação , Imageamento Tridimensional , Bibliotecas Digitais , Lorisidae/anatomia & histologia , Lorisidae/classificação , Madagáscar , North Carolina , Filogenia , Especificidade da Espécie , Universidades , Microtomografia por Raio-X
4.
Am J Phys Anthropol ; 168(1): 131-144, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408150

RESUMO

OBJECTIVES: We tested whether patterns of intraspecific variation in catarrhine vertebral shape are consistent with developmental or functional predictions. Intraspecific variation was compared across column regions, morphological features, and species. Transitional regions and later ossifying morphological features were predicted to exhibit increased variation. The lumbosacral region, biomechanically important morphological features, and species with high locomotor demand and/or dedicated pronogrady were predicted to exhibit decreased variation. MATERIALS AND METHODS: We used a modified Levene's test to compare intraspecific variation in dimensions of the neural canal, vertebral bodies, and spinous and transverse processes in lower thoracic to proximal sacral vertebrae. The sample included all hominoid genera and one cercopithecoid (Chlorocebus). RESULTS: We found little difference in variation across regions of the vertebral column. In hominoids, vertebral body dimensions were the least variable, neural canal dimensions the most variable, with spinous and transverse processes generally intermediate. Among species, there was a general though not always significant pattern for Chlorocebus to exhibit the least variation, followed by Homo or Hylobates. DISCUSSION: Patterns of variation across morphological features may reflect the complex interaction of functional constraints, developmental timing, and/or variable biomechanical forces. Pongo's elevated variation in spinous process length suggests a release from functional constraint, consistent with its suspensory locomotion and reduced spinous processes. Interspecific differences in vertebral variation based on locomotor demand or posture are generally consistent with patterns previously reported for vertebral formula and other aspects of morphology. Future research would benefit from an expanded taxonomic sample and more detailed analyses of vertebral modularity and developmental timing.


Assuntos
Catarrinos , Coluna Vertebral , Animais , Antropologia Física , Evolução Biológica , Catarrinos/anatomia & histologia , Catarrinos/crescimento & desenvolvimento , Catarrinos/fisiologia , Humanos , Locomoção , Especificidade da Espécie , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/crescimento & desenvolvimento , Coluna Vertebral/fisiologia
5.
J Exp Zool A Ecol Genet Physiol ; 325(5): 329-43, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27222465

RESUMO

As the smallest living primate, the mouse lemur is a suitable model for reconstructing the locomotor mechanisms by which primate ancestors might have responded to the challenges of an arboreal environment. In this study, we tested the effects of substrate diameter and orientation on quadrupedal gait kinematics in mouse lemurs (Microcebus murinus). Mouse lemurs highly preferred asymmetrical to symmetrical gaits as they moved across a flat board and poles of three diameters (2.5, 1.0, and 0.5 cm), set at horizontal, 30° inclined, and 30° declined orientations. During symmetrical gaits, mouse lemurs used diagonal sequence walking and ambling gaits on the same substrates and at the same duty factors for which some similarly sized nonprimate mammals use lateral sequence gaits, suggesting that reliance on diagonal sequence walking in primates may not be explicitly a response to body size relative to substrate diameter. When using asymmetrical gaits, kinematic adjustments to small diameter and/or nonhorizontal substrates included a preference for transverse gallops over other gaits, the avoidance of whole-body suspensions, increases in limb contact duration, and increases in the time interval between the landing of trailing and leading limbs. All of these adjustments are consistent with increasing locomotor stability by dampening center of mass movements and reducing the forces imparted to the substrate. Like mouse lemurs, small-bodied ancestral primates likely used symmetrical gaits occasionally, but more frequently used asymmetrical gaits that were adjusted in response to challenging substrates. Therefore, asymmetrical gait dynamics should be incorporated into hypotheses addressing early primate locomotor evolution.


Assuntos
Cheirogaleidae/fisiologia , Marcha/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Masculino
6.
Nature ; 515(7528): 512-7, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25383528

RESUMO

Previously known only from isolated teeth and lower jaw fragments recovered from the Cretaceous and Palaeogene of the Southern Hemisphere, the Gondwanatheria constitute the most poorly known of all major mammaliaform radiations. Here we report the discovery of the first skull material of a gondwanatherian, a complete and well-preserved cranium from Upper Cretaceous strata in Madagascar that we assign to a new genus and species. Phylogenetic analysis strongly supports its placement within Gondwanatheria, which are recognized as monophyletic and closely related to multituberculates, an evolutionarily successful clade of Mesozoic mammals known almost exclusively from the Northern Hemisphere. The new taxon is the largest known mammaliaform from the Mesozoic of Gondwana. Its craniofacial anatomy reveals that it was herbivorous, large-eyed and agile, with well-developed high-frequency hearing and a keen sense of smell. The cranium exhibits a mosaic of primitive and derived features, the disparity of which is extreme and probably reflective of a long evolutionary history in geographic isolation.


Assuntos
Fósseis , Mamíferos , Filogenia , Crânio/anatomia & histologia , Animais , Herbivoria , Mosaicismo , Especificidade da Espécie , Dente/anatomia & histologia
7.
Anat Rec (Hoboken) ; 297(4): 781-90, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24591307

RESUMO

The semicircular canals of the inner ear detect head rotations and trigger compensatory movements that stabilize gaze and help maintain visual fixation. Mammals with large eyes and high visual acuity require precise gaze stabilization mechanisms because they experience diminished visual functionality at low thresholds of uncompensated motion. Because semicircular canal radius of curvature is a primary determinant of canal sensitivity, species with large canal radii are expected to be capable of more precise gaze stabilization than species with small canal radii. Here, we examine the relationship between mean semicircular canal radius of curvature, eye size, and visual acuity in a large sample of mammals. Our results demonstrate that eye size and visual acuity both explain a significant proportion of the variance in mean canal radius of curvature after statistically controlling for the effects of body mass and phylogeny. These findings suggest that variation in mean semicircular canal radius of curvature among mammals is partly the result of selection for improved gaze stabilization in species with large eyes and acute vision. Our results also provide a possible functional explanation for the small semicircular canal radii of fossorial mammals and plesiadapiforms.


Assuntos
Olho/anatomia & histologia , Mamíferos/anatomia & histologia , Canais Semicirculares/anatomia & histologia , Vestíbulo do Labirinto/anatomia & histologia , Acuidade Visual/fisiologia , Animais , Mamíferos/classificação , Canais Semicirculares/fisiologia , Vestíbulo do Labirinto/fisiologia
8.
BMC Ecol ; 12: 4, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22449178

RESUMO

BACKGROUND: Studies of host-parasite interactions have the potential to provide insights into the ecology of both organisms involved. We monitored the movement of sucking lice (Lemurpediculus verruculosus), parasites that require direct host-host contact to be transferred, in their host population of wild mouse lemurs (Microcebus rufus). These lemurs live in the rainforests of Madagascar, are small (40 g), arboreal, nocturnal, solitary foraging primates for which data on population-wide interactions are difficult to obtain. We developed a simple, cost effective method exploiting the intimate relationship between louse and lemur, whereby individual lice were marked, without removal from their host, with an individualized code, and tracked throughout the lemur population. We then tested the hypotheses that 1) the frequency of louse transfers, and thus interactions, would decrease with increasing distance between paired individual lemurs; 2) due to host polygynandry, social interactions and hence louse transfers would increase during the onset of the breeding season; and 3) individual mouse lemurs would vary in their contributions to the spread of lice. RESULTS: We show that louse transfers involved 43.75% of the studied lemur population, exclusively males. Louse transfers peaked during the breeding season, perhaps due to increased social interactions between lemurs. Although trap-based individual lemur ranging patterns are restricted, louse transfer rate does not correlate with the distance between lemur trapping locales, indicating wider host ranging behavior and a greater risk of rapid population-wide pathogen transmission than predicted by standard trapping data alone. Furthermore, relatively few lemur individuals contributed disproportionately to the rapid spread of lice throughout the population. CONCLUSIONS: Using a simple method, we were able to visualize exchanges of lice in a population of cryptic wild primates. This method not only provided insight into the previously unseen parasite movement between lemurs, but also allowed us to infer social interactions between them. As lice are known pathogen vectors, our method also allowed us to identify the lemurs most likely to facilitate louse-mediated epidemics. Our approach demonstrates the potential to uncover otherwise inaccessible parasite-host, and host social interaction data in any trappable species parasitized by sucking lice.


Assuntos
Anoplura/fisiologia , Cheirogaleidae/parasitologia , Interações Hospedeiro-Parasita , Infestações por Piolhos/veterinária , Comportamento Social , Animais , Madagáscar , Masculino , Dinâmica Populacional , Estações do Ano , Comportamento Sexual Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...