Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(46): 17170-17181, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380717

RESUMO

Memristors are emerging as promising candidates for practical application in reservoir computing systems that are capable of temporal information processing. Here, we experimentally implement a physical reservoir computing system using resistive memristors based on three-dimensional (3D)-structured mesoporous silica (mSiO2) thin films fabricated by a low cost, fast and vacuum-free sol-gel technique. The in situ learning capability and a classification accuracy of 100% on a standard machine learning dataset are experimentally demonstrated. The volatile (temporal) resistive switching in diffusive memristors arises from the formation and subsequent spontaneous rupture of conductive filaments via diffusion of Ag species within the 3D-structured nanopores of the mSiO2 thin film. Besides volatile switching, the devices also exhibit a bipolar non-volatile resistive switching behavior when the devices are operated at a higher compliance current level. The implementation of mSiO2 thin films opens the route to fabricate a simple and low cost dynamic memristor with a temporal information process functionality, which is essential for neuromorphic computing applications.

2.
ACS Pharmacol Transl Sci ; 4(5): 1567-1577, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34661075

RESUMO

Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups to arginine residues in proteins. PRMT inhibitors are novel, promising drugs against cancer that are currently in clinical trials, which include oral administration of the drugs. However, off-target activities of systemically available PRMT inhibitors have not yet been investigated. In this work, we study the relevance of arginine methylation in platelets and investigate the effect of PRMT inhibitors on platelet function and on the expression of relevant platelet receptors. We show that (1) key platelet proteins are modified by arginine methylation; (2) incubation of human platelets with PRMT inhibitors for 4 h results in impaired capacity of platelets to aggregate in response to thrombin and collagen, with IC50 values in the µM range; and (3) treatment with PRMT inhibitors leads to decreased membrane expression and reduced activation of the critical platelet integrin αIIbß3. Our contribution opens new avenues for research on arginine methylation in platelets, including the repurposing of arginine methylation inhibitors as novel antiplatelet drugs. We also recommend that current and future clinical trials with PRMT inhibitors consider any adverse effects associated with platelet inhibition of these emerging anticancer drugs.

3.
RSC Adv ; 10(43): 25540-25546, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35518573

RESUMO

We report the fabrication of a solution-processed n-type Thin Film Transistor (TFT) with current on/off ratios of 104, a turn-on voltage (V ON) of 1.2 V and a threshold voltage (V T) of 6.2 V. The TFT incorporates an insoluble and intractable dielectric layer (k = 7-9) prepared in situ from solution-processed and then photopolymerised ligand-stabilised, inorganic/organic TiO2 nanorods. A solution processed zinc oxide (ZnO) layer acts as the semiconductor. The new surface-modified TiO2 nanorods were synthesised using a ligand replacement process with a monolayer coating of photopolymerisable 10-undecynylphosphonic acid (10UCYPA) to render them both soluble in common organic solvents and be photopolymerisable using UV-illumination after having been deposited on substrate surfaces from solution and drying.

4.
Nanotechnology ; 31(15): 155203, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31860883

RESUMO

Nanoimprint lithography (NIL) is a fast, simple and high throughput technique that allows fabrication of structures with nanometre precision features at low cost. We present an advanced bilayer nanoimprint lithography approach to fabricate four terminal nanojunction devices for use in single molecule electronic studies. In the first part of this work, we demonstrate a NIL lift-off process using a bilayer resist technique that negates problems associated with metal side-wall tearing during lift-off. In addition to precise nanoscale feature replication, we show that it is possible to imprint micron-sized features while still maintaining a bilayer structure enabling an undercut resist structure to be formed. This is accomplished by choosing suitable imprint parameters as well as residual layer etching depth and development time. We then use a feedback controlled electromigration procedure, to produce room-temperature stable nanogap electrodes with sizes below 2 nm. This approach facilitates the integration of molecules in stable, solid-state molecular electronic devices as demonstrated by incorporating benzenethiol as molecular bridges between the electrodes and characterizing its electronics properties through current-voltage measurements. The observation of molecular transport signatures, showing current suppression in the I-V behaviour at low voltage, which is then lifted at high voltage, signifying on- and off-resonant transport through molecular levels as a function of voltage, is confirmed in repeated I-V sweeps. The large conductance, symmetry of the I-V sweep and small value of the voltage minimum in transition voltage spectroscopy indicates the bridging of the two benzenethiol molecules is by π-stacking.

5.
J Am Chem Soc ; 141(33): 12989-12993, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31381859

RESUMO

Alignment of metal-organic framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that bromobenzene-suspended microrod crystals of the MOF NU-1000 can also be dynamically aligned via electric fields, giving rise to rapid electrooptical responses. This method of dynamic MOF alignment opens up new avenues of MOF control which are important for integration of MOFs into switchable electronic devices as well as in other applications such as reconfigurable sensors or optical systems.

6.
Phys Chem Chem Phys ; 21(2): 681-691, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30543220

RESUMO

A significant impediment to the use of impedance spectroscopy in bio-sensing is the electrode polarization effect that arises from the movement of free ions to the electrode-solution interface, forming an electrical double layer (EDL). The EDL screens the dielectric response of the bulk and its large capacitance dominates the signal response at low frequency, masking information particularly relevant for biological samples, such as molecular conformation changes and DNA hybridization. The fabrication of nanogap capacitors with electrode separation less than the EDL thickness can significantly reduce electrode polarization effects and provide enormous improvement in sensitivity due to better matching of the sensing volume with the size of the target entities. We report on the fabrication of a horizontal thin-film nanogap capacitive sensor with electrode separation of 40 nm that shows almost no electrode polarization effects when measured with water and ionic buffer solutions, thereby allowing direct quantification of their relative permittivity at low frequencies. Surface modification of the electrodes with thiol-functionalized single strand DNA aptamers transforms the device into a label-free biosensor with high sensitivity and selectivity towards the detection of a specific protein. Using this approach, we have developed a biosensor for the detection of human alpha thrombin. In addition, we also examine frequency dependent permittivity measurements on high ionic strength solutions contained within the nanogap and discuss how these support recent experimental observations of large Debye lengths. A large shift in the Debye relaxation frequency to lower frequency is also found, which is consistent with water molecules being in a rigid-like state, possibly indicating the formation of an ordered "ice-like" phase. Altogether, this work highlights the need for better understanding of fluids in confined, nanoscale geometries, from which important new applications in sensing may arise.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Eletrodos , Proteínas/análise , Capacitância Elétrica , Eletroquímica , Humanos , Proteínas Recombinantes/análise , Trombina/análise
7.
Nanoscale Adv ; 1(1): 254-264, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132481

RESUMO

We report the synthesis of the first stable, solution-processable and photocrosslinkable hybrid organic/inorganic titanium dioxide nanorods as 'hairy rods' coated with phosphonate ligands with photoreactive coumarin groups located in a terminal position. The relationships between the chemical structure of the diethyl-ω-[(7-oxycoumaryl)-n-alkyl]phosphonate ligands on the ligand exchange rate (LER) and the solubility of the resultant ligand-stabilized titanium dioxide nanorods in organic solvents are elucidated. These TiO2 nanorods, with an organic ligand coating, are short enough (aspect ratio = 5-8) to be dissolved in chlorobenzene at high concentrations, but long enough to form lyotropic nematic liquid crystals. These colloidal solutions are used to deposit a thin, uniform layer of hybrid organic/inorganic TiO2 nanorods with their long axes in the plane of a flat, smooth substrate through a self-organization process. Standard photolithographic patterning creates an insoluble dielectric layer of the desired thickness, smoothness and uniformity and with a dielectric constant of sufficient magnitude, k = 8, suitable for the fabrication of multilayer, plastic electronic devices using solution-based fabrication techniques, such as ink-jet printing, used in roll-to-roll manufacturing.

8.
Nanoscale ; 9(43): 17091-17098, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29086790

RESUMO

Optical control of memristors opens the route to new applications in optoelectronic switching and neuromorphic computing. Motivated by the need for reversible and latched optical switching we report on the development of a memristor with electronic properties tunable and switchable by wavelength and polarization specific light. The device consists of an optically active azobenzene polymer, poly(disperse red 1 acrylate), overlaying a forest of vertically aligned ZnO nanorods. Illumination induces trans-cis isomerization of the azobenzene molecules, which expands or contracts the polymer layer and alters the resistance of the off/on states, their ratio and retention time. The reversible optical effect enables dynamic control of a memristor's learning properties including control of synaptic potentiation and depression, optical switching between short-term and long-term memory and optical modulation of the synaptic efficacy via spike timing dependent plasticity. The work opens the route to the dynamic patterning of memristor networks both spatially and temporally by light, thus allowing the development of new optically reconfigurable neural networks and adaptive electronic circuits.

9.
Langmuir ; 31(22): 6253-64, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25996202

RESUMO

Surface interface engineering using superhydrophobic gold electrodes made with 1-dodecanethiol self-assembled monolayer (SAM) has been used to enhance the current limiting properties of novel surge protection devices based on the intrinsic conducting polymer, polyaniline doped with methanesulfonic acid. The resulting devices show significantly enhanced current limiting characteristics, including current saturation, foldback, and negative differential effects. We show how SAM modification changes the morphology of the polymer film directly adjacent to the electrodes, leading to the formation of an interfacial compact thin film that lowers the contact resistance at the Au-polymer interface. We attribute the enhanced current limiting properties of the devices to a combination of lower contact resistance and increased Joule heating within this interface region which during a current surge produces a current blocking resistive barrier due to a thermally induced dedoping effect caused by the rapid diffusion of moisture away from this region. The effect is exacerbated at higher applied voltages as the higher temperature leads to stronger depletion of charge carriers in this region, resulting in a negative differential resistance effect.

10.
Proc Natl Acad Sci U S A ; 111(29): 10433-7, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25009179

RESUMO

In the field of spintronics, the archetype solid-state two-terminal device is the spin valve, where the resistance is controlled by the magnetization configuration. We show here how this concept of spin-dependent switch can be extended to magnetic electrodes in solution, by magnetic control of their chemical environment. Appropriate nanoscale design allows a huge enhancement of the magnetic force field experienced by paramagnetic molecular species in solutions, which changes between repulsive and attractive on changing the electrodes' magnetic orientations. Specifically, the field gradient force created within a sub-100-nm-sized nanogap separating two magnetic electrodes can be reversed by changing the orientation of the electrodes' magnetization relative to the current flowing between the electrodes. This can result in a breaking or making of an electric nanocontact, with a change of resistance by a factor of up to 10(3). The results reveal how an external field can impact chemical equilibrium in the vicinity of nanoscale magnetic circuits.

11.
Langmuir ; 22(23): 9554-65, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17073479

RESUMO

We report the rich surface chemistry exhibited by the reactions of 1,1,1-trifluoroethyl iodide (CF3CH2I) adsorbed onto gallium-rich GaAs(100)-(4 x 1), studied by temperature-programmed desorption (TPD) and low-energy electron diffraction (LEED) studies and X-ray photoelectron spectroscopy (XPS). CF3CH2I adsorbs molecularly at 150 K but dissociates, below room temperature, to form a chemisorbed monolayer of CF3CH2 and I species. Recombinative desorption of molecular CF3CH2I competes with the further reactions of the CF3CH2 and I chemisorbed species. The CF3CH2 species can either undergo beta-fluoride elimination to yield gaseous CF2=CH2 or it can undergo self-coupling to form the corresponding higher alkane, CF3CH2CH2CF3. A second coupling product, CF3CH2CH=CF2, is also evolved, and it is postulated that migratory insertion of the liberated CF2=CH2 into the surface-carbon bond of the chemisorbed CF3CH2 is responsible for its formation. The iodines, formed by C-I scission in the chemisorbed CF3CH2I, and the fluorines, derived from beta-fluoride elimination in CF3CH2, react with the surface gallium dimers, and Ga-As back-bonds to generate five etch products (GaF, AsF, GaI, AsI, and As2) that desorb in the temperature range of 420 to >600 K. XPS data reveal that the surface stoichiometry remains constant throughout the entire annealing temperature range because of the desorption of both gallium- and arsenic-containing etch products, which occur sequentially. In this article, plausible mechanisms by which all products form and the binding sites of these reactions in the (4 x 1) reconstruction are discussed. Factors that control the rate constants of etch product versus hydrocarbon product formation and in particular how they impact on the respective desorption temperatures will be discussed.

12.
Langmuir ; 22(14): 6222-33, 2006 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-16800679

RESUMO

Surface reactions of CH2I2 on gallium-rich GaAs(100)-(4 x 1), studied by temperature programmed desorption and X-ray photoelectron spectroscopy (XPS), show CH2I2 adsorbs dissociatively at liquid nitrogen temperatures to form surface chemisorbed CH2(ads) and I(ads) species. Controlled hydrogenation of a fraction of the CH2(ads) species in the chemisorbed layer by the background hydrogen radicals results in a surface layer comprising both CH3(ads) and CH2(ads) species. This hydrogenation step initiates a plethora of further surface reactions involving these two species and I(ads). Thermal activation leads to three sequential methylene insertions (CH2(ads)) into the CH3-surface bond to form three higher alkyl (ethyl (C2), propyl (C3), and butyl (C4)) species, which undergo beta-hydride elimination to evolve the respective higher alkene (ethene, propene, and butene). In competition with beta-hydride elimination, reductive elimination of the ethyl and propyl species with I(ads) occurs to liberate the respective alkyl iodide. Beta-hydride elimination in the alkyls, in the temperature range 420-520 K, is the more dominant pathway, and it is also the rate-limiting step for further chain propagation. The evolution of the alkyl iodides represents the only pathway for the removal of surface iodines in this study and is different from previous investigations where gallium and arsenic iodide etch products (GaI(x), AsI(x) (x = 1-3)) formed instead. The desorption of methane and methyl iodide, formed from surface CH3(ads) species at high temperatures by the reaction between surface methylenes and hydrogens eliminated from the surface C2-C4 alkyls, terminates the chain propagation. We discuss the reaction mechanisms by which the observed reaction products form and postulate reasons for the reaction pathways adopted by the surface species.

13.
Chem Commun (Camb) ; (34): 4348-50, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16113744

RESUMO

Sequential multiple methylene (CH2) insertions into adsorbed methyl species on clean gallium-rich GaAs(100)-(4 x 1) occurs to form higher alkenes (ethene, propene, butene) and two higher alkyl iodides (iodoethane, iodopropane), not reported for a semiconductor surface previously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...