Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(16): 160403, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701446

RESUMO

Response functions of quantum systems, such as electron Green's functions, magnetic, or charge susceptibilities, describe the response of a system to an external perturbation. They are the central objects of interest in field theories and quantum computing and measured directly in experiment. Response functions are intrinsically causal. In equilibrium and steady-state systems, they correspond to a positive spectral function in the frequency domain. Since response functions define an inner product on a Hilbert space and thereby induce a positive definite function, the properties of this function can be used to reduce noise in measured data and, in equilibrium and steady state, to construct positive definite extensions for data known on finite time intervals, which are then guaranteed to correspond to positive spectra.

2.
Sci Adv ; 9(29): eadg3710, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467326

RESUMO

Most resonant inelastic x-ray scattering (RIXS) studies of dynamic charge order correlations in the cuprates have focused on the high-symmetry directions of the copper oxide plane. However, scattering along other in-plane directions should not be ignored as it may help understand, for example, the origin of charge order correlations or the isotropic scattering resulting in strange metal behavior. Our RIXS experiments reveal dynamic charge correlations over the qx-qy scattering plane in underdoped Bi2Sr2CaCu2O8+δ. Tracking the softening of the RIXS-measured bond-stretching phonon, we show that these dynamic correlations exist at energies below approximately 70 meV and are centered around a quasi-circular manifold in the qx-qy scattering plane with radius equal to the magnitude of the charge order wave vector, qCO. This phonon-tracking procedure also allows us to rule out fluctuations of short-range directional charge order (i.e., centered around [qx = ±qCO, qy = 0] and [qx = 0, qy = ±qCO]) as the origin of the observed correlations.

3.
Phys Rev Lett ; 129(7): 070501, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018680

RESUMO

Simulating quantum dynamics on classical computers is challenging for large systems due to the significant memory requirements. Simulation on quantum computers is a promising alternative, but fully optimizing quantum circuits to minimize limited quantum resources remains an open problem. We tackle this problem by presenting a constructive algorithm, based on Cartan decomposition of the Lie algebra generated by the Hamiltonian, which generates quantum circuits with time-independent depth. We highlight our algorithm for special classes of models, including Anderson localization in one-dimensional transverse field XY model, where O(n^{2})-gate circuits naturally emerge. Compared to product formulas with significantly larger gate counts, our algorithm drastically improves simulation precision. In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.

4.
Nat Commun ; 12(1): 5744, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593814

RESUMO

Next-generation terahertz (THz) sources demand lightweight, low-cost, defect-tolerant, and robust components with synergistic, tunable capabilities. However, a paucity of materials systems simultaneously possessing these desirable attributes and functionalities has made device realization difficult. Here we report the observation of asymmetric spintronic-THz radiation in Two-Dimensional Hybrid Metal Halides (2D-HMH) interfaced with a ferromagnetic metal, produced by ultrafast spin current under femtosecond laser excitation. The generated THz radiation exhibits an asymmetric intensity toward forward and backward emission direction whose directionality can be mutually controlled by the direction of applied magnetic field and linear polarization of the laser pulse. Our work demonstrates the capability for the coherent control of THz emission from 2D-HMHs, enabling their promising applications on the ultrafast timescale as solution-processed material candidates for future THz emitters.

5.
Sci Adv ; 7(34)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34407938

RESUMO

Partition functions are ubiquitous in physics: They are important in determining the thermodynamic properties of many-body systems and in understanding their phase transitions. As shown by Lee and Yang, analytically continuing the partition function to the complex plane allows us to obtain its zeros and thus the entire function. Moreover, the scaling and nature of these zeros can elucidate phase transitions. Here, we show how to find partition function zeros on noisy intermediate-scale trapped-ion quantum computers in a scalable manner, using the XXZ spin chain model as a prototype, and observe their transition from XY-like behavior to Ising-like behavior as a function of the anisotropy. While quantum computers cannot yet scale to the thermodynamic limit, our work provides a pathway to do so as hardware improves, allowing the future calculation of critical phenomena for systems beyond classical computing limits.

6.
J Microsc ; 284(1): 83-94, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34152622

RESUMO

The mitotic spindle is a microtubule-based machine that pulls the two identical sets of chromosomes to opposite ends of the cell during cell division. The fission yeast Schizosaccharomyces pombe is an important model organism for studying mitosis due to its simple, stereotyped spindle structure and well-established genetic toolset. S. pombe spindle length is a useful metric for mitotic progression, but manually tracking spindle ends in each frame to measure spindle length over time is laborious and can limit experimental throughput. We have developed an ImageJ plugin that can automatically track S. pombe spindle length over time and replace manual or semi-automated tracking of spindle elongation dynamics. Using an algorithm that detects the principal axis of the spindle and then finds its ends, we reliably track the length of the spindle as the cell divides. The plugin integrates with existing ImageJ features, exports its data for further analysis outside of ImageJ and does not require any programming by the user. Thus, the plugin provides an accessible tool for quantification of S. pombe spindle length that will allow automatic analysis of large microscopy data sets and facilitate screening for effects of cell biological perturbations on mitotic progression.


The mitotic spindle is a biological machine that pulls the two identical sets of DNA to opposite ends of the cell during cell division. Incorrect cell division can result in serious issues like cancer and miscarriages. Schizosaccharomyces pombe (S. pombe), a kind of yeast, is commonly used to study cell division because its mitotic spindle is essentially linear in shape and its DNA sequence is well known, allowing for more complex experiments. To measure how well a cell divides, we measure the length of the spindle over time, but this can be tedious to do by hand for many cell images. We have developed software that interfaces with ImageJ (a common image analysis tool) that automatically tracks the length of S. pombe spindles over time and can replace manual tracking. Our software calculates the spindle's lines of symmetry, while allows us to accurately measure the length and track the ends over time. It integrates with existing ImageJ features, exports its data for further analysis outside of ImageJ, and does not require any programming by the user. Thus, the plugin provides an accessible tool for measuring S. pombe spindle length that will allow automatic analysis of large microscopy data sets and facilitate screening for effects of defects in cell division. This will facilitate the study of the basic fundamental process of how cells divide, and could have significant long term medical impacts.


Assuntos
Schizosaccharomyces , Microscopia , Microtúbulos/química , Mitose , Fuso Acromático
7.
Nat Commun ; 12(1): 566, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33495452

RESUMO

Nonequilibrium phase transitions play a pivotal role in broad physical contexts, from condensed matter to cosmology. Tracking the formation of nonequilibrium phases in condensed matter requires a resolution of the long-range cooperativity on ultra-short timescales. Here, we study the spontaneous transformation of a charge-density wave in CeTe3 from a stripe order into a bi-directional state inaccessible thermodynamically but is induced by intense laser pulses. With ≈100 fs resolution coherent electron diffraction, we capture the entire course of this transformation and show self-organization that defines a nonthermal critical point, unveiling the nonequilibrium energy landscape. We discuss the generation of instabilities by a swift interaction quench that changes the system symmetry preference, and the phase ordering dynamics orchestrated over a nonadiabatic timescale to allow new order parameter fluctuations to gain long-range correlations. Remarkably, the subsequent thermalization locks the remnants of the transient order into longer-lived topological defects for more than 2 ns.

8.
Adv Mater ; 32(49): e2005315, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33145825

RESUMO

Emergent topological insulators (TIs) and their design are in high demand for manipulating and transmitting spin information toward ultralow-power-consumption spintronic applications. Here, distinct topological states with tailored spin properties can be achieved in a single reduced-dimensional TI-superlattice, (Bi2 /Bi2 Se3 )-(Bi2 /Bi2 Se3 )N or (□/Bi2 Se3 )-(Bi2 /Bi2 Se3 )N (N is the repeating unit, □ represents an empty layer) by controlling the termination via molecular beam epitaxy. The Bi2 -terminated superlattice exhibits a single Dirac cone with a spin momentum splitting ≈0.5 Å-1 , producing a pronounced inverse Edelstein effect with a coherence length up to 1.26 nm. In contrast, the Bi2 Se3 -terminated superlattice is identified as a dual TI protected by coexisting time reversal and mirror symmetries, showing an unexpectedly long spin lifetime up to 1 ns. The work elucidates the key role of dimensionality and dual topological phases in selecting desired spin properties, suggesting a promise route for engineering topological superlattices for high-performance TI-spintronic devices.

9.
Nat Commun ; 9(1): 4452, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367073

RESUMO

Nonequilibrium many-body dynamics is becoming a central topic in condensed matter physics. Floquet topological states were suggested to emerge in photodressed bands under periodic laser driving. Here we propose a viable nonequilibrium route without requiring coherent Floquet states to reach the elusive magnetic Weyl semimetallic phase in pyrochlore iridates by ultrafast modification of the effective electron-electron interaction with short laser pulses. Combining ab initio calculations for a time-dependent self-consistent light-reduced Hubbard U and nonequilibrium magnetism simulations for quantum quenches, we find dynamically modified magnetic order giving rise to transiently emerging Weyl cones that can be probed by time- and angle-resolved photoemission spectroscopy. Our work offers a unique and realistic pathway for nonequilibrium materials engineering beyond Floquet physics to create and sustain Weyl semimetals. This may lead to ultrafast, tens-of-femtoseconds switching protocols for light-engineered Berry curvature in combination with ultrafast magnetism.

10.
Sci Adv ; 4(4): eaap7427, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29719862

RESUMO

The interplay between the electronic and lattice degrees of freedom in nonequilibrium states of strongly correlated systems has been debated for decades. Although progress has been made in establishing a hierarchy of electronic interactions with the use of time-resolved techniques, the role of the phonons often remains in dispute, a situation highlighting the need for tools that directly probe the lattice. We present the first combined megaelectron volt ultrafast electron diffraction and time- and angle-resolved photoemission spectroscopy study of optimally doped Bi2Sr2CaCu2O8+δ. Quantitative analysis of the lattice and electron subsystems' dynamics provides a unified picture of nonequilibrium electron-phonon interactions in the cuprates beyond the N-temperature model. The work provides new insights on the specific phonon branches involved in the nonequilibrium heat dissipation from the high-energy Cu-O bond stretching "hot" phonons to the lowest-energy acoustic phonons with correlated atomic motion along the <110> crystal directions and their characteristic time scales. It reveals a highly nonthermal phonon population during the first several picoseconds after the photoexcitation. The approach, taking advantage of the distinct nature of electrons and photons as probes, is applicable for studying energy relaxation in other strongly correlated electron systems.

11.
Sci Adv ; 4(2): eaar1998, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29507885

RESUMO

Many puzzling properties of high-critical temperature (Tc) superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu-O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate. After photoinducing a nonthermal charge redistribution within the Cu and O orbitals, we reveal a dramatic momentum-space differentiation of the transient electron dynamics. Whereas the nodal quasiparticle distribution is heated up as in a conventional metal, new quasiparticle states transiently emerge at the antinodes, similarly to what is expected for a photoexcited Mott insulator, where the frozen charges can be released by an impulsive excitation. This transient antinodal metallicity is mapped into the dynamics of the O-2p bands, thus directly demonstrating the intertwining between the low- and high-energy scales that is typical of correlated materials. Our results suggest that the correlation-driven freezing of the electrons moving along the Cu-O bonds, analogous to the Mott localization mechanism, constitutes the starting point for any model of high-Tc superconductivity and other exotic phases of HTSC cuprates.

12.
Nano Lett ; 18(1): 455-459, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29215286

RESUMO

Strong correlations between electrons and holes can drive the existence of an electron-hole liquid (EHL) state, typically at high carrier densities and low temperatures. The recent emergence of quasi-two-dimensional (2D) monolayer transition metal dichalcogenides (TMDCs) provides ideal systems to explore the EHL state since ineffective screening of the out-of-plane field lines in these quasi-2D systems allows for stronger charge carrier correlations in contrast to conventional 3D bulk semiconductors and enables the existence of the EHL at high temperatures. Here we construct the phase diagram for the photoinduced first-order phase transition from a plasma of electron-hole pairs to a correlated EHL state in suspended monolayer MoS2. We show that the quasi-2D nature of monolayer TMDCs and the ineffective screening of the out-of-plane field lines allow for this phase transition to occur at and above room temperature, thereby opening avenues for studying many-body phenomena without the constraint of cryogenics.

13.
Sci Adv ; 3(11): e1600735, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29202025

RESUMO

The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La1.75Sr0.25NiO4, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen-as witnessed by time-delayed suppression of zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.

14.
Nat Commun ; 8: 13940, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28094286

RESUMO

Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulses with circularly polarized light can be used to switch between Weyl semimetal, Dirac semimetal and topological insulator states in a prototypical three-dimensional (3D) Dirac material, Na3Bi. Our findings are general and apply to any 3D Dirac semimetal. We discuss the concept of time-dependent bands and steering of Floquet-Weyl points and demonstrate how light can enhance topological protection against lattice perturbations. This work has potential practical implications for the ultrafast switching of materials properties, such as optical band gaps or anomalous magnetoresistance.

15.
Nat Commun ; 7: 13143, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739428

RESUMO

Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.

16.
Nano Lett ; 15(6): 4150-4, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26027951

RESUMO

Ultrathin FeSe films grown on SrTiO3 substrates are a recent milestone in atomic material engineering due to their important role in understanding unconventional superconductivity in Fe-based materials. By using femtosecond time- and angle-resolved photoelectron spectroscopy, we study phonon frequencies in ultrathin FeSe/SrTiO3 films grown by molecular beam epitaxy. After optical excitation, we observe periodic modulations of the photoelectron spectrum as a function of pump-probe delay for 1-unit-cell, 3-unit-cell, and 60-unit-cell thick FeSe films. The frequencies of the coherent intensity oscillations increase from 5.00 ± 0.02 to 5.25 ± 0.02 THz with increasing film thickness. By comparing with previous works, we attribute this mode to the Se A1g phonon. The dominant mechanism for the phonon softening in 1-unit-cell thick FeSe films is a substrate-induced lattice strain. Our results demonstrate an abrupt phonon renormalization due to a lattice mismatch between the ultrathin film and the substrate.

17.
Phys Rev Lett ; 113(21): 217001, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25479515

RESUMO

In the iron pnictides and chalcogenides, multiple orbitals participate in the superconducting state, enabling different gap structures to be realized in distinct materials. Here we argue that the spectral weights of these orbitals can, in principle, be controlled by a tetragonal symmetry-breaking uniaxial strain, due to the enhanced nematic susceptibility of many iron-based superconductors. By investigating multiorbital microscopic models in the presence of orbital order, we show that not only Tc can be enhanced, but pairs of accidental gap nodes can be annihilated and created in the Fermi surface by an increasing external strain. We explain our results as a mixture of nearly degenerate superconducting states promoted by strain, and show that the annihilation and creation of nodes can be detected experimentally via anisotropic penetration depth measurements. Our results provide a promising framework to externally control the superconducting properties of iron-based materials.

18.
Sci Rep ; 3: 1274, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23429420

RESUMO

Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at -1.9 V, increasing to 2.02 ± 0.16 u.c. at -1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges.

19.
Proc Natl Acad Sci U S A ; 110(1): 64-9, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23248317

RESUMO

Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.


Assuntos
Fenômenos Eletromagnéticos , Elétrons , Magnetismo , Transição de Fase/efeitos da radiação , Érbio/química , Análise Espectral Raman , Telúrio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...