Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(30): e2200512119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35857872

RESUMO

Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.


Assuntos
Linfócitos B , Infecções por Vírus Epstein-Barr , Antígenos Nucleares do Vírus Epstein-Barr , Regulação da Expressão Gênica , Herpesvirus Humano 4 , Proteínas Proto-Oncogênicas c-myc , Transativadores , Proteínas Virais , Linfócitos B/imunologia , Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Fase S , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
EMBO Rep ; 22(12): e53007, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34605140

RESUMO

While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Animais , Proteínas de Ciclo Celular , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Latência Viral , Quinase 1 Polo-Like
3.
Leukemia ; 33(1): 132-147, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29946193

RESUMO

Cancer cells subvert host immune surveillance by altering immune checkpoint (IC) proteins. Some Epstein-Barr virus (EBV)-associated tumors have higher Programmed Cell Death Ligand, PD-L1 expression. However, it is not known how EBV alters ICs in the context of its preferred host, the B lymphocyte and in derived lymphomas. Here, we found that latency III-expressing Burkitt lymphoma (BL), diffuse large B-cell lymphomas (DLBCL) or their EBNA2-transfected derivatives express high PD-L1. In a DLBCL model, EBNA2 but not LMP1 is sufficient to induce PD-L1. Latency III-expressing DLBCL biopsies showed high levels of PD-L1. The PD-L1 targeting oncosuppressor microRNA miR-34a was downregulated in EBNA2-transfected lymphoma cells. We identified early B-cell factor 1 (EBF1) as a repressor of miR-34a transcription. Short hairpin RNA (shRNA)-mediated knockdown of EBF1 was sufficient to induce miR-34a transcription, which in turn reduced PD-L1. MiR-34a reconstitution in EBNA2-transfected DLBCL reduced PD-L1 expression and increased its immunogenicity in mixed lymphocyte reactions (MLR) and in three-dimensional biomimetic microfluidic chips. Given the importance of PD-L1 inhibition in immunotherapy and miR-34a dysregulation in cancers, our findings may have important implications for combinatorial immunotherapy, which include IC inhibiting antibodies and miR-34a, for EBV-associated cancers.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/imunologia , Linfoma Difuso de Grandes Células B/imunologia , MicroRNAs/genética , Proteínas Virais/metabolismo , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/virologia , Prognóstico , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Células Tumorais Cultivadas , Proteínas Virais/genética
4.
PLoS Pathog ; 13(10): e1006664, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28968461

RESUMO

Epstein-Barr virus (EBV) infection converts resting human B cells into permanently proliferating lymphoblastoid cell lines (LCLs). The Epstein-Barr virus nuclear antigen 2 (EBNA2) plays a key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Apparently, CBF1 independent EBNA2 target genes and chromatin binding sites can be identified but are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 via its N-terminal domain. CBF1 proficient and deficient B cells require EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2.


Assuntos
Linfócitos B/metabolismo , Cromatina/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Linfócitos B/virologia , Linhagem Celular , Humanos , Regiões Promotoras Genéticas/imunologia , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/imunologia
6.
J Clin Immunol ; 36(7): 684-92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27473539

RESUMO

Hereditary defects in several genes have been shown to disturb the normal immune response to EBV and to give rise to severe EBV-induced lymphoproliferation in the recent years. Nevertheless, in many patients, the molecular basis of fatal EBV infection still remains unclear. The Fanconi anemia-associated protein 24 (FAAP24) plays a dual role in DNA repair. By association with FANCM as component of the FA core complex, it recruits the FA core complex to damaged DNA. Additionally, FAAP24 has been shown to evoke ATR-mediated checkpoint responses independently of the FA core complex. By whole exome sequencing, we identified a homozygous missense mutation in the FAAP24 gene (cC635T, pT212M) in two siblings of a consanguineous Turkish family who died from an EBV-associated lymphoproliferative disease after infection with a variant EBV strain, expressing a previously unknown EBNA2 allele.In order to analyze the functionality of the variant FAAP24 allele, we used herpes virus saimiri-transformed patient T cells to test endogenous cellular FAAP24 functions that are known to be important in DNA damage control. We saw an impaired FANCD2 monoubiquitination as well as delayed checkpoint responses, especially affecting CHK1 phosphorylation in patient samples in comparison to healthy controls. The phenotype of this FAAP24 mutation might have been further accelerated by an EBV strain that harbors an EBNA2 allele with enhanced activities compared to the prototype laboratory strain B95.8. This is the first report of an FAAP24 loss of function mutation found in human patients with EBV-associated lymphoproliferation.


Assuntos
Proteínas de Ligação a DNA/genética , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/genética , Mutação , Irmãos , Substituição de Aminoácidos , Ciclo Celular , Códon , Consanguinidade , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi , Evolução Fatal , Feminino , Genótipo , Homozigoto , Humanos , Contagem de Linfócitos , Transtornos Linfoproliferativos/virologia , Masculino , Linhagem , Fenótipo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Troca de Cromátide Irmã , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ubiquitinação , Sequenciamento do Exoma
7.
Nucleic Acids Res ; 44(10): 4636-50, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-26883634

RESUMO

In B cells infected by the cancer-associated Epstein-Barr virus (EBV), RUNX3 and RUNX1 transcription is manipulated to control cell growth. The EBV-encoded EBNA2 transcription factor (TF) activates RUNX3 transcription leading to RUNX3-mediated repression of the RUNX1 promoter and the relief of RUNX1-directed growth repression. We show that EBNA2 activates RUNX3 through a specific element within a -97 kb super-enhancer in a manner dependent on the expression of the Notch DNA-binding partner RBP-J. We also reveal that the EBV TFs EBNA3B and EBNA3C contribute to RUNX3 activation in EBV-infected cells by targeting the same element. Uncovering a counter-regulatory feed-forward step, we demonstrate EBNA2 activation of a RUNX1 super-enhancer (-139 to -250 kb) that results in low-level RUNX1 expression in cells refractory to RUNX1-mediated growth inhibition. EBNA2 activation of the RUNX1 super-enhancer is also dependent on RBP-J. Consistent with the context-dependent roles of EBNA3B and EBNA3C as activators or repressors, we find that these proteins negatively regulate the RUNX1 super-enhancer, curbing EBNA2 activation. Taken together our results reveal cell-type-specific exploitation of RUNX gene super-enhancers by multiple EBV TFs via the Notch pathway to fine tune RUNX3 and RUNX1 expression and manipulate B-cell growth.


Assuntos
Linfócitos B/virologia , Subunidades alfa de Fatores de Ligação ao Core/genética , Elementos Facilitadores Genéticos , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Linfócitos B/metabolismo , Linhagem Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo
8.
PLoS Pathog ; 12(1): e1005383, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26751214

RESUMO

It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C. For the first time, EBNA3C was here shown to be the main regulator of all three genes early after infection of primary B cells. Using various EBV-recombinants, repression over orders of magnitude was seen only when EBNA3C was expressed. Unexpectedly, full repression was not achieved until 30 days after infection. This was accurately reproduced in established LCLs carrying EBV-recombinants conditional for EBNA3C function, demonstrating the utility of the conditional system to replicate events early after infection. Using this system, detailed chromatin immunoprecipitation analysis revealed that the initial repression was associated with loss of activation-associated histone modifications (H3K9ac, H3K27ac and H3K4me3) and was independent of recruitment of polycomb proteins and deposition of the repressive H3K27me3 modification, which were only observed later in repression. Most remarkable, and in contrast to current models of RBPJ in repression, was the observation that this DNA-binding factor accumulated at the EBNA3C-binding sites only when EBNA3C was functional. Transient reporter assays indicated that repression of these genes was dependent on the interaction between EBNA3C and RBPJ. This was confirmed with a novel EBV-recombinant encoding a mutant of EBNA3C unable to bind RBPJ, by showing this virus was incapable of repressing COBLL1 or ADAM28/ADAMDEC1 in newly infected primary B cells.


Assuntos
Linfócitos B/virologia , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Células Cultivadas , Cromatina/genética , Imunoprecipitação da Cromatina , Interações Hospedeiro-Parasita/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Curr Opin Virol ; 14: 138-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26453799

RESUMO

EBV drives resting B cells to continuous proliferating latently infected cells. A restricted program of viral transcription contributes to latency and cell proliferation important for growth transformation. Recent interest in latency and transformation has provided new data about the roles of the EBV encoded latent proteins and non-coding RNAs. We broadly describe the transcription, epigenetic, signaling and super-enhancer functions of the latent nuclear antigens in regulating cellular transcription; the role of LMP2 in utilization of the autophagosome to control cell death, and the association between LMP1, the linear ubiquitin chain assembly complex and TRAF1 which are important for transformation. This review explores recent discoveries with new insights into therapeutic avenues for EBV related malignancies.


Assuntos
Carcinogênese , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Latência Viral , Regulação da Expressão Gênica , Humanos
10.
Curr Top Microbiol Immunol ; 391: 35-59, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26428371

RESUMO

While all herpesviruses can switch between lytic and latent life cycle, which are both driven by specific transcription programs, a unique feature of latent EBV infection is the expression of several distinct and well-defined viral latent transcription programs called latency I, II, and III. Growth transformation of B-cells by EBV in vitro is based on the concerted action of Epstein-Barr virus nuclear antigens (EBNAs) and latent membrane proteins(LMPs). EBV growth-transformed B-cells express a viral transcriptional program, termed latency III, which is characterized by the coexpression of EBNA2 and EBNA-LP with EBNA1, EBNA3A, -3B, and -3C as well as LMP1, LMP2A, and LMP2B. The focus of this review will be to discuss the current understanding of how two of these proteins, EBNA2 and EBNA-LP, contribute to EBV-mediated B-cell growth transformation.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Proteínas Virais/metabolismo , Animais , Linfócitos B/virologia , Transformação Celular Viral , Antígenos Nucleares do Vírus Epstein-Barr/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Proteínas Virais/genética
11.
PLoS Pathog ; 11(5): e1004910, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26024477

RESUMO

Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four ß-strands and an α-helix which form a parallel dimer by interaction of two ß-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.


Assuntos
Antígenos Nucleares do Vírus Epstein-Barr/química , Proteínas Mutantes/química , Transativadores/genética , Ativação Transcricional , Proteínas Virais/química , Adulto , Sequência de Aminoácidos , Western Blotting , Cristalografia por Raios X , Antígenos Nucleares do Vírus Epstein-Barr/genética , Imunofluorescência , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Dados de Sequência Molecular , Proteínas Mutantes/genética , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética
12.
Sci Transl Med ; 7(282): 282ra47, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855493

RESUMO

Infiltration by macrophages represents a characteristic morphological hallmark in high-grade lymphatic malignancies such as Burkitt's lymphoma (BL). Although macrophages can, in principle, target neoplastic cells and mediate antibody-dependent cellular cytotoxicity (ADCC), tumor-associated macrophages (TAMs) regularly fail to exert direct cytotoxic functions. The underlying mechanisms responsible for this observation remain unclear. We demonstrate that inflammatory M1 macrophages kill proliferating high-grade B cell lymphoma cells by releasing the antimicrobial peptide cathelicidin in a vitamin D-dependent fashion. We show that cathelicidin directly induces cell death by targeting mitochondria of BL cells. In contrast, anti-inflammatory M2 macrophages and M2-like TAMs in BL exhibit an altered vitamin D metabolism, resulting in a reduced production of cathelicidin and consequently in inability to lyse BL cells. However, treatment of M2 macrophages with the bioactive form of vitamin D, 1,25D3, or a vitamin D receptor agonist effectively induces cathelicidin production and triggers tumoricidal activity against BL cells. Furthermore, rituximab-mediated cytotoxicity of vitamin D-treated M2 macrophages is cathelicidin-dependent. Finally, vitamin D treatment of 25-hydroxyvitamin D (25D)-deficient volunteers in vivo or primary TAMs in vitro improves rituximab-mediated ADCC against B cell lymphoma cells. These data indicate that activation of the vitamin D signaling pathway activates antitumor activity of TAMs and improves the efficacy of ADCC.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Linfoma de Células B/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Vitamina D/análogos & derivados , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Vitamina D/farmacologia , Catelicidinas
13.
J Immunol ; 194(4): 1434-45, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595783

RESUMO

Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B cell lymphomas. Although many of c-MYC's functions have been elucidated, its effect on the presentation of Ag through the HLA class II pathway has not been reported previously. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report in this paper that increased c-MYC expression has a negative effect on the ability of B cell lymphomas to functionally present Ags/peptides to CD4(+) T cells. This defect was associated with alterations in the expression of distinct cofactors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt's lymphoma (BL) tumors and transformed cells, we show that compared with B lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47-kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation, which contribute to the immunoevasive properties of BL tumors.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Linfoma de Células B/imunologia , Proteínas Proto-Oncogênicas c-myc/imunologia , Evasão Tumoral/imunologia , Western Blotting , Citometria de Fluxo , Humanos , Espectrometria de Massas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Células Tumorais Cultivadas
14.
J Exp Med ; 212(1): 37-52, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25512468

RESUMO

Aberrant Notch activity is oncogenic in several malignancies, but it is unclear how expression or function of downstream elements in the Notch pathway affects tumor growth. Transcriptional regulation by Notch is dependent on interaction with the DNA-binding transcriptional repressor, RBPJ, and consequent derepression or activation of associated gene promoters. We show here that RBPJ is frequently depleted in human tumors. Depletion of RBPJ in human cancer cell lines xenografted into immunodeficient mice resulted in activation of canonical Notch target genes, and accelerated tumor growth secondary to reduced cell death. Global analysis of activated regions of the genome, as defined by differential acetylation of histone H4 (H4ac), revealed that the cell death pathway was significantly dysregulated in RBPJ-depleted tumors. Analysis of transcription factor binding data identified several transcriptional activators that bind promoters with differential H4ac in RBPJ-depleted cells. Functional studies demonstrated that NF-κB and MYC were essential for survival of RBPJ-depleted cells. Thus, loss of RBPJ derepresses target gene promoters, allowing Notch-independent activation by alternate transcription factors that promote tumorigenesis.


Assuntos
Carcinogênese/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Neoplasias/genética , Receptores Notch/genética , Acetilação , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Histonas/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , NF-kappa B/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transplante Heterólogo
15.
Nucleic Acids Res ; 42(15): 9700-16, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25092922

RESUMO

The Epstein-Barr virus (EBV) nuclear antigen 3 family of protein is critical for the EBV-induced primary B-cell growth transformation process. Using a yeast two-hybrid screen we identified 22 novel cellular partners of the EBNA3s. Most importantly, among the newly identified partners, five are known to play direct and important roles in transcriptional regulation. Of these, the Myc-interacting zinc finger protein-1 (MIZ-1) is a transcription factor initially characterized as a binding partner of MYC. MIZ-1 activates the transcription of a number of target genes including the cell cycle inhibitor CDKN2B. Focusing on the EBNA3A/MIZ-1 interaction we demonstrate that binding occurs in EBV-infected cells expressing both proteins at endogenous physiological levels and that in the presence of EBNA3A, a significant fraction of MIZ-1 translocates from the cytoplasm to the nucleus. Moreover, we show that a trimeric complex composed of a MIZ-1 recognition DNA element, MIZ-1 and EBNA3A can be formed, and that interaction of MIZ-1 with nucleophosmin (NPM), one of its coactivator, is prevented by EBNA3A. Finally, we show that, in the presence of EBNA3A, expression of the MIZ-1 target gene, CDKN2B, is downregulated and repressive H3K27 marks are established on its promoter region suggesting that EBNA3A directly counteracts the growth inhibitory action of MIZ-1.


Assuntos
Inibidor de Quinase Dependente de Ciclina p15/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Oxirredutases do Álcool/metabolismo , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/biossíntese , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Antígenos Nucleares do Vírus Epstein-Barr/química , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/química
16.
PLoS One ; 8(11): e80908, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260507

RESUMO

Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for the characterisation of macrophage polarisation in situ. Furthermore, CD163 cannot be considered a reliable M2 marker when used on its own.


Assuntos
Doença de Crohn/patologia , Granuloma de Corpo Estranho/patologia , Hipersensibilidade/patologia , Mononucleose Infecciosa/patologia , Macrófagos/patologia , Pólipos Nasais/patologia , Oxiuríase/patologia , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Biomarcadores/metabolismo , Análise por Conglomerados , Doença de Crohn/imunologia , Expressão Gênica , Granuloma de Corpo Estranho/imunologia , Humanos , Hipersensibilidade/imunologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/imunologia , Imuno-Histoquímica , Imunofenotipagem , Mononucleose Infecciosa/imunologia , Macrófagos/classificação , Macrófagos/imunologia , Pólipos Nasais/imunologia , Oxiuríase/imunologia , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Cicatrização/imunologia
17.
PLoS Pathog ; 9(9): e1003636, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24068937

RESUMO

Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors.


Assuntos
Reprogramação Celular , Elementos Facilitadores Genéticos , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Marcação de Genes , Herpesvirus Humano 4/metabolismo , Modelos Biológicos , Proteínas Repressoras/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Sítios de Ligação , Ligação Competitiva , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas Correpressoras , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Antígenos Nucleares do Vírus Epstein-Barr/química , Antígenos Nucleares do Vírus Epstein-Barr/genética , Interações Hospedeiro-Patógeno , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
PLoS Pathog ; 9(9): e1003638, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24068939

RESUMO

Epstein-Barr virus (EBV) causes a persistent infection in human B cells by establishing specific transcription programs to control B cell activation and differentiation. Transcriptional reprogramming of EBV infected B cells is predominantly driven by the action of EBV nuclear antigens, among them the transcriptional repressor EBNA3A. By comparing gene expression profiles of wt and EBNA3A negative EBV infected B cells, we have previously identified a broad array of cellular genes controlled by EBNA3A. We now find that genes repressed by EBNA3A in these cells are significantly enriched for the repressive histone mark H3K27me3, which is installed by Polycomb group (PcG) proteins. This PcG-controlled subset of genes also carries H3K27me3 marks in a variety of other tissues, suggesting that the commitment to PcG silencing is an intrinsic feature of these gene loci that can be used by EBNA3A. In addition, EBNA3A targets frequently reside in co-regulated gene clusters. To study the mechanism of gene repression by EBNA3A and to evaluate the relative contribution of PcG proteins during this process, we have selected the genomic neighbors CXCL10 and CXCL9 as a model for co-repressed and PcG-controlled genes. We show that EBNA3A binds to CBF1 occupied intergenic enhancers located between CXCL10 and CXCL9 and displaces the transactivator EBNA2. This impairs enhancer activity, resulting in a rapid transcriptional shut-down of both genes in a CBF1-dependent manner and initiation of a delayed gain of H3K27me3 marks covering an extended chromatin domain. H3K27me3 marks increase gradually and are maintained by EBNA3A. Our study provides direct evidence that repression by EBNA3A requires CBF1 and that EBNA3A and EBNA2 compete for access to CBF1 at identical genomic sites. Most importantly, our results demonstrate that transcriptional silencing by EBNA3A precedes the appearance of repressive PcG marks and indicate that both events are triggered by loss of enhancer activity.


Assuntos
Linfócitos B/metabolismo , DNA Intergênico/metabolismo , Elementos Facilitadores Genéticos , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Modelos Biológicos , Proteínas Virais/metabolismo , Linfócitos B/imunologia , Linfócitos B/virologia , Linhagem Celular , Reprogramação Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Montagem e Desmontagem da Cromatina , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Mutação , Proteínas do Grupo Polycomb/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
19.
PLoS Pathog ; 9(5): e1003336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696732

RESUMO

Since Kaposi's sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines, which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a global hub which is used by the virus to coordinate the lytic cascade.


Assuntos
Genes Virais/fisiologia , Herpesvirus Humano 8/fisiologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Fases de Leitura Aberta/fisiologia , Ativação Viral/fisiologia , Linfócitos B , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética
20.
J Neurosci ; 30(41): 13794-807, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20943920

RESUMO

The generation of new neurons from neural stem cells in the adult hippocampal dentate gyrus contributes to learning and mood regulation. To sustain hippocampal neurogenesis throughout life, maintenance of the neural stem cell pool has to be tightly controlled. We found that the Notch/RBPJκ-signaling pathway is highly active in neural stem cells of the adult mouse hippocampus. Conditional inactivation of RBPJκ in neural stem cells in vivo resulted in increased neuronal differentiation of neural stem cells in the adult hippocampus at an early time point and depletion of the Sox2-positive neural stem cell pool and suppression of hippocampal neurogenesis at a later time point. Moreover, RBPJκ-deficient neural stem cells displayed impaired self-renewal in vitro and loss of expression of the transcription factor Sox2. Interestingly, we found that Notch signaling increases Sox2 promoter activity and Sox2 expression in adult neural stem cells. In addition, activated Notch and RBPJκ were highly enriched on the Sox2 promoter in adult hippocampal neural stem cells, thus identifying Sox2 as a direct target of Notch/RBPJκ signaling. Finally, we found that overexpression of Sox2 can rescue the self-renewal defect in RBPJκ-deficient neural stem cells. These results identify RBPJκ-dependent pathways as essential regulators of adult neural stem cell maintenance and suggest that the actions of RBPJκ are, at least in part, mediated by control of Sox2 expression.


Assuntos
Células-Tronco Adultas/metabolismo , Hipocampo/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Neurônios/metabolismo , Animais , Western Blotting , Contagem de Células , Imunoprecipitação da Cromatina , Feminino , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Masculino , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurogênese/fisiologia , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...