Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Angiogenesis ; 26(3): 349-362, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36867287

RESUMO

Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.


Assuntos
Moléculas de Adesão Celular , Migração Transendotelial e Transepitelial , Nectinas , Movimento Celular/fisiologia , Adesão Celular
3.
Cell Mol Life Sci ; 79(10): 515, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100764

RESUMO

Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.


Assuntos
Gotículas Lipídicas , Remielinização , Gotículas Lipídicas/metabolismo , Lipídeos , Bainha de Mielina/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
4.
Nat Immunol ; 23(6): 878-891, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618831

RESUMO

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.


Assuntos
Astrócitos , Produtos Biológicos , Animais , Encéfalo , Humanos , Interleucina-2/genética , Interleucinas , Camundongos , Doenças Neuroinflamatórias , Linfócitos T Reguladores
5.
Pharmacol Ther ; 235: 108160, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35183592

RESUMO

Although spontaneous recovery can occur following ischemic stroke due to endogenous neuronal reorganization and neuroplastic events, the degree of functional improvement is highly variable, causing many patients to remain permanently impaired. In the last decades, non-invasive brain stimulation (NIBS) techniques have emerged as potential add-on interventions to the standard neurorehabilitation programs to improve post-stroke recovery. Due to their ability to modulate cortical excitability and to induce neuroreparative processes in the brain, multiple studies have assessed the safety, efficacy and (sub)cellular mechanisms of NIBS following ischemic stroke. In this review, an overview will be provided of the different NIBS techniques that are currently being investigated in (pre)clinical stroke studies. The NIBS therapies that will be discussed include transcranial magnetic stimulation, transcranial direct current stimulation and extremely low frequency electromagnetic stimulation. First, an overview will be given of the cellular mechanisms induced by NIBS that are associated with enhanced stroke outcome in preclinical models. Furthermore, the current knowledge on safety and efficacy of these NIBS techniques in stroke patients will be reviewed.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Estimulação Transcraniana por Corrente Contínua , Encéfalo/fisiologia , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos
6.
J Cereb Blood Flow Metab ; 42(6): 979-996, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35209740

RESUMO

Extremely low frequency electromagnetic stimulation (ELF-EMS) has been considered as a neuroprotective therapy for ischemic stroke based on its capacity to induce nitric oxide (NO) signaling. Here, we examined whether ELF-EMS reduces ischemic stroke volume by stimulating cerebral collateral perfusion. Moreover, the pathway responsible for ELF-EMS-induced NO production was investigated. ELF-EMS diminished infarct growth following experimental stroke in collateral-rich C57BL/6 mice, but not in collateral-scarce BALB/c mice, suggesting that decreased lesion sizes after ELF-EMS results from improved collateral blood flow. In vitro analysis demonstrated that ELF-EMS increased endothelial NO levels by stimulating the Akt-/eNOS pathway. Furthermore, ELF-EMS augmented perfusion in the hind limb of healthy mice, which was mediated by enhanced Akt-/eNOS signaling. In healthy C57BL/6 mouse brains, ELF-EMS treatment increased cerebral blood flow in a NOS-dependent manner, whereas no improvement in cerebrovascular perfusion was observed in collateral-sparse BALB/c mice. In addition, ELF-EMS enhanced cerebral blood flow in both the contra- and ipsilateral hemispheres of C57BL/6 mice subjected to experimental ischemic stroke. In conclusion, we showed that ELF-EMS enhances (cerebro)vascular perfusion by stimulating NO production, indicating that ELF-EMS could be an attractive therapeutic strategy for acute ischemic stroke by improving cerebral collateral blood flow.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Animais , Isquemia Encefálica/terapia , Circulação Cerebrovascular , Circulação Colateral/fisiologia , Fenômenos Eletromagnéticos , Isquemia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Óxido Nítrico , Proteínas Proto-Oncogênicas c-akt
7.
Transl Stroke Res ; 11(1): 60-79, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31309427

RESUMO

Adult neurogenesis in the subventricular zone is a topic of intense research, since it has vast implications for the fundamental understanding of the neurobiology of the brain and its potential to being harnessed for therapy in various neurological disorders. Investigation of adult neurogenesis has been complicated by the difficulties with characterization of neural stem cells in vivo. However, recent single-cell transcriptomic studies provide more detailed information on marker expression in neural stem cells and their neuronal lineage, which hopefully will result in a more unified discussion. Regulation of the multiple biological steps in adult neurogenesis comprises intrinsic mechanisms as well as extrinsic factors which together orchestrate the process. In this review, we describe the regulating factors and their cellular sources in the physiological condition and provide an overview of the regulating factors mediating stroke-induced stimulation of neurogenesis in the subventricular zone. While there is ongoing debate about the longevity of active post-natal neurogenesis in humans, the subventricular zone has the capacity to upregulate neurogenesis in response to ischemic stroke. Though, the stroke-induced neurogenesis in humans does not seem to translate into adequate functional recovery, which opens discussion about potential treatment strategies to harness this neuroregenerative response. Various therapeutic approaches are explored in preclinical and clinical studies to target endogenous neurogenesis of which some are discussed in this review.


Assuntos
Isquemia Encefálica/fisiopatologia , AVC Isquêmico/fisiopatologia , Ventrículos Laterais/fisiopatologia , Neurogênese , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Proliferação de Células , Humanos , AVC Isquêmico/etiologia , AVC Isquêmico/terapia , Células-Tronco Neurais/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia
8.
Front Neurosci ; 13: 561, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275094

RESUMO

Despite the high prevalence and devastating outcome, only a few treatment options for cerebral ischemic stroke exist. Based on the nitric oxide (NO)-stimulating capacity of Non-pulsed Sinusoidal Electromagnetic Field (NP-SEMF) and the possible neuroprotective role of NO in ischemic stroke, we hypothesized that NP-SEMF is able to enhance survival and neurological outcome in a rat model of cerebral ischemia. The animals, in which ischemic injury was induced by occlusion of both common carotid arteries, received 20 min of NP-SEMF of either 10 or 60 Hz daily for 4 days. NP-SEMF dramatically increased survival, reduced the size of the infarcted brain area and significantly improved the neurological score of the surviving rats. Corresponding to previous reports, NP-SEMF was able to induce NO production in vitro. The importance of NO as a key signaling molecule was highlighted by inhibition of the NP-SEMF beneficial effects in the rat stroke model after blocking NO synthase (NOS). Our results indicate for the first time that NP-SEMF exposure (13.5 mT at 60 and 10 Hz) improves the survival and neurological outcome of rats subjected to cerebral ischemia and that this effect is mediated by NO, underlining the great therapeutic potential of NP-SEMF as a therapy for ischemic stroke.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...