Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 201(5): 406-417, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38319684

RESUMO

The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.


Assuntos
Síndrome Aguda da Radiação , Animais , Camundongos , Masculino , Síndrome Aguda da Radiação/patologia , Síndrome Aguda da Radiação/etiologia , Relação Dose-Resposta à Radiação , Jejuno/efeitos da radiação , Jejuno/patologia , Modelos Animais de Doenças , Índice de Gravidade de Doença , Trato Gastrointestinal/efeitos da radiação , Trato Gastrointestinal/patologia , Peso Corporal/efeitos da radiação , Lesões Experimentais por Radiação/patologia
2.
Int J Radiat Biol ; 99(7): 1037-1045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37172305

RESUMO

PURPOSE: Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and human radiation accidents. Various radiation exposure scenarios (i.e. total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced gastrointestinal severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e. citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e. mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS: A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.


Assuntos
Síndrome Aguda da Radiação , Contramedidas Médicas , Suínos , Humanos , Animais , Camundongos , Porco Miniatura , Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/etiologia , Citrulina , Macaca mulatta
3.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R281-R291, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107022

RESUMO

Alternative splicing of exon24 (E24) of myosin phosphatase targeting subunit 1 (Mypt1) by setting sensitivity to nitric oxide (NO)/cGMP-mediated relaxation is a key determinant of smooth muscle function. Here we defined expression of myosin phosphatase (MP) subunits and isoforms by creation of new genetic mouse models, assay of human and mouse tissues, and query of public databases. A Mypt1-LacZ reporter mouse revealed that Mypt1 transcription is turned on early in development during smooth muscle differentiation. Mypt1 is not as tightly restricted in its expression as smooth muscle myosin heavy chain (Myh11) and its E6 splice variant. Mypt1 is enriched in mature smooth versus nonmuscle cells. The E24 splice variant and leucine zipper minus protein isoform that it encodes is enriched in phasic versus tonic smooth muscle. In the vascular system, E24 splicing increases as vessel size decreases. In the gastrointestinal system, E24 splicing is most predominant in smooth muscle of the small intestine. Tissue-specific expression of MP subunits and Mypt1 E24 splicing is conserved in humans, whereas a splice variant of the inhibitory subunit (CPI-17) is unique to humans. A Mypt1 E24 mini-gene splicing reporter mouse generated to define patterns of E24 splicing in smooth muscle cells (SMCs) dispersed throughout the organ systems was unsuccessful. In summary, expression of Mypt1 and splicing of E24 is part of the program of smooth muscle differentiation, is further enhanced in phasic smooth muscle, and is conserved in humans. Its low-level expression in nonmuscle cells may confound its measurement in tissue samples.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Fosfatase de Miosina-de-Cadeia-Leve , Animais , GMP Cíclico/metabolismo , Humanos , Camundongos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Radiat Res ; 196(2): 156-174, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019667

RESUMO

Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.


Assuntos
Síndrome Aguda da Radiação/patologia , Hematopoese/genética , Hemorragia/patologia , Inflamação/patologia , Anormalidades Induzidas por Radiação , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Transtornos de Proteínas de Coagulação/sangue , Transtornos de Proteínas de Coagulação/etiologia , Transtornos de Proteínas de Coagulação/patologia , Modelos Animais de Doenças , Hematopoese/efeitos da radiação , Hemorragia/sangue , Hemorragia/etiologia , Humanos , Inflamação/sangue , Inflamação/etiologia , Suínos , Porco Miniatura
6.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466349

RESUMO

Following exposure to high doses of ionizing radiation, diverse strains of vertebrate species will manifest varying levels of radiation sensitivity. To understand the inter-strain cellular and molecular mechanisms of radiation sensitivity, two mouse strains with varying radiosensitivity (C3H/HeN, and CD2F1), were exposed to total body irradiation (TBI). Since Insulin-like Growth Factor-1 (IGF-1) signaling pathway is associated with radiosensitivity, we investigated the link between systemic or tissue-specific IGF-1 signaling and radiosensitivity. Adult male C3H/HeN and CD2F1 mice were irradiated using gamma photons at Lethal Dose-70/30 (LD70/30), 7.8 and 9.35 Gy doses, respectively. Those mice that survived up to 30 days post-irradiation, were termed the survivors. Mice that were euthanized prior to 30 days post-irradiation due to deteriorated health were termed decedents. The analysis of non-irradiated and irradiated survivor and decedent mice showed that inter-strain radiosensitivity and post-irradiation survival outcomes are associated with activation status of tissue and systemic IGF-1 signaling, nuclear factor erythroid 2-related factor 2 (Nrf2) activation, and the gene expression profile of cardiac mitochondrial energy metabolism pathways. Our findings link radiosensitivity with dysregulation of IGF-1 signaling, and highlight the role of antioxidant gene response and mitochondrial function in radiation sensitivity.


Assuntos
Antioxidantes/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Tolerância a Radiação/fisiologia , Transdução de Sinais/fisiologia , Animais , Relação Dose-Resposta à Radiação , Raios gama , Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Radiação Ionizante , Irradiação Corporal Total/métodos
8.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708958

RESUMO

Acute exposure to ionizing radiation leads to Hematopoietic Acute Radiation Syndrome (H-ARS). To understand the inter-strain cellular and molecular mechanisms of radiation sensitivity, adult males of two strains of minipig, one with higher radiosensitivity, the Gottingen minipig (GMP), and another strain with comparatively lower radiosensitivity, the Sinclair minipig (SMP), were exposed to total body irradiation (TBI). Since Insulin-like Growth Factor-1 (IGF-1) signaling is associated with radiation sensitivity and regulation of cardiovascular homeostasis, we investigated the link between dysregulation of cardiac IGF-1 signaling and radiosensitivity. The adult male GMP; n = 48, and SMP; n = 24, were irradiated using gamma photons at 1.7-2.3 Gy doses. The animals that survived to day 45 after irradiation were euthanized and termed the survivors. Those animals that were euthanized prior to day 45 post-irradiation due to severe illness or health deterioration were termed the decedents. Cardiac tissue analysis of unirradiated and irradiated animals showed that inter-strain radiosensitivity and survival outcomes in H-ARS are associated with activation status of the cardiac IGF-1 signaling and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated induction of antioxidant gene expression. Our data link H-ARS with dysregulation of cardiac IGF-1 signaling, and highlight the role of oxidative stress and cardiac antioxidant response in radiation sensitivity.


Assuntos
Síndrome Aguda da Radiação/metabolismo , Coração/efeitos da radiação , Sistema Hematopoético/efeitos da radiação , Fator de Crescimento Insulin-Like I/metabolismo , Transdução de Sinais/efeitos da radiação , Síndrome Aguda da Radiação/etiologia , Síndrome Aguda da Radiação/patologia , Animais , Raios gama/efeitos adversos , Sistema Hematopoético/metabolismo , Sistema Hematopoético/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Estresse Oxidativo/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Suínos , Porco Miniatura
9.
Int J Radiat Oncol Biol Phys ; 103(4): 935-944, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30496878

RESUMO

PURPOSE: Understanding the physiopathology underlying the acute radiation syndrome (ARS) and the mechanism of action of drugs known to ameliorate ARS is expected to help identify novel countermeasure candidates and improve the outcome for victims exposed to radiation. Granulocyte colony-stimulating factor (G-CSF) has been approved by the US Food and Drug Administration for treatment of hematopoietic ARS (H-ARS) because of its ability to alleviate myelosuppression. Besides its role in hematopoiesis, G-CSF is known to protect the cardiovascular and neurologic systems, to attenuate vascular injury and cardiac toxicity, to preserve gap junction function, and to modulate inflammation and oxidative stress. Here, we characterized the protective effects of G-CSF beyond neutrophil recovery in minipigs exposed to H-ARS doses. METHODS AND MATERIALS: Twenty male Göttingen minipigs were exposed to total body, acute ionizing radiation. Animals received either pegylated G-CSF (Neulasta) or dextrose at days 1 and 8 after irradiation. Survival was monitored over a 45-day period. RESULTS: Neulasta decreased mortality compared with the control, reduced nadir and duration of neutropenia, and lowered prevalence of organ hemorrhage and frank bleeding episodes. Neulasta also increased plasma concentration of IGF-1 hormone, activated the cardiovascular protective IGF-1R/PI3K/Akt/eNOS/NO pathway, and enhanced membrane expression of VE-cadherin in the heart, improving vascular tone and barrier function. Expression of the acute phase protein CRP, a mediator of cardiovascular diseases and a negative regulator of the IGF-1 pathway, was also induced but at much lower extent compared with IGF-1. Activity of catalase and superoxide dismutase (SOD-1) was only marginally affected, whereas activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was downregulated. CONCLUSIONS: In addition to a neutrophilic effect, amelioration of endothelial homeostasis and barrier function and reduction in NADPH oxidase contribute to the beneficial effects of Neulasta for the treatment of H-ARS.


Assuntos
Síndrome Aguda da Radiação/tratamento farmacológico , Síndrome Aguda da Radiação/imunologia , Filgrastim/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos da radiação , Polietilenoglicóis/farmacologia , Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/patologia , Animais , Proteína C-Reativa/biossíntese , Endotélio/efeitos dos fármacos , Endotélio/patologia , Endotélio/efeitos da radiação , Filgrastim/uso terapêutico , Fator de Crescimento Insulin-Like I/biossíntese , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fosfatidilinositol 3-Quinases/metabolismo , Polietilenoglicóis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Análise de Sobrevida , Suínos
10.
Radiat Res ; 190(2): 164-175, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29809108

RESUMO

Although bone marrow aplasia has been considered for the past decades as the major contributor of radiation-induced blood disorders, cytopenias alone are insufficient to explain differences in the prevalence of bleeding. In this study, the minipig was used as a novel preclinical model of hematopoietic acute radiation syndrome to assess if factors other than platelet counts correlated with bleeding and survival. We sought to determine whether radiation affected the insulin-like growth factor-1 (IGF-1) pathway, a growth hormone with cardiovascular and radioprotective features. Gottingen and Sinclair minipigs were exposed to ionizing radiation at hematopoietic doses. The smaller Gottingen minipig strain was more sensitive to radiation; differences in IGF-1 levels were minimal, suggesting that increased sensitivity could depend on weak response to the hormone. Radiation caused IGF-1 selective resistance by inhibiting the anti-inflammatory anti-oxidative stress IRS/PI3K/Akt but not the pro-inflammatory MAPK kinase pathway, shifting IGF-1 signaling towards a pro-oxidant, pro-inflammatory environment. Selective IGF-1 resistance associated with hemorrhages in the heart, poor prognosis, increase in C-reactive protein and NADPH oxidase 2, uncoupling of endothelial nitric oxide synthase, inhibition of nitric oxide (NO) synthesis and imbalance between the vasodilator NO and the vasoconstrictor endothelin-1 molecules. Selective IGF-1 resistance is a novel mechanism of radiation injury, associated with a vicious cycle amplifying reactive oxygen species-induced damage, inflammation and endothelial dysfunction. In the presence of thrombocytopenia, selective inhibition of IGF-1 cardioprotective function may contribute to the development of hemostatic disorders. This finding may be particularly relevant for individuals with low IGF-1 activity, such as the elderly or those with cardiometabolic dysfunctions.


Assuntos
Síndrome Aguda da Radiação/diagnóstico , Síndrome Aguda da Radiação/metabolismo , Coração/efeitos da radiação , Sistema Hematopoético/efeitos da radiação , Hemorragia/diagnóstico , Hemorragia/etiologia , Fator de Crescimento Insulin-Like I/metabolismo , Síndrome Aguda da Radiação/patologia , Angiotensina II/metabolismo , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Proteína C-Reativa/metabolismo , Modelos Animais de Doenças , Hemorragia/metabolismo , Hemorragia/patologia , Masculino , Óxido Nítrico Sintase Tipo III/metabolismo , Prognóstico , Tolerância a Radiação , Transdução de Sinais/efeitos da radiação , Suínos , Porco Miniatura
11.
Invest Ophthalmol Vis Sci ; 58(11): 4683-4693, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28910443

RESUMO

Purpose: Corneal epithelial (CE) homeostasis requires coordination between proliferation and differentiation. Here we examine the role of cell proliferation regulator Krüppel-like factor 5 (Klf5) in adult mouse CE homeostasis. Methods: Klf5 was ablated in a spatiotemporally restricted manner by inducing Cre expression in 8-week-old ternary transgenic Klf5LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre (Klf5Δ/ΔCE) mouse CE by administering doxycycline via chow. Normal chow-fed ternary transgenic siblings served as controls. The control and Klf5Δ/ΔCE corneal (1) histology, (2) cell proliferation, and (3) Klf5-target gene expression were examined using (1) periodic acid Schiff reagent-stained sections, (2) Ki67 expression, and (3) quantitative PCR and immunostaining, respectively. The effect of KLF4, KLF5, and OCT1 on gastrokine-1 (GKN1) promoter activity was determined by transient transfection in human skin keratinocyte NCTC-2544 cells. Results: Klf5 expression was decreased to 23% of the controls in Klf5Δ/ΔCE corneas, which displayed increased fluorescein uptake, downregulation of tight junction proteins Tjp1 and Gkn1, desmosomal Dsg1a, and basement membrane Lama3 and Lamb1, suggesting defective permeability barrier. In transient transfection assays, KLF5 and OCT1 synergistically stimulated GKN1 promoter activity. Klf5Δ/ΔCE CE displayed significantly fewer cell layers and Ki67+ proliferative cells coupled with significantly decreased cyclin-D1, and elevated phospho(Ser-10) p27/Kip1 expression. Expression of Krt12, E-cadherin, and ß-catenin remained unaltered in Klf5Δ/ΔCE corneas. Conclusions: Klf5 contributes to adult mouse CE homeostasis by promoting (1) permeability barrier function through upregulation of Tjp1, Gkn1, Dsg1a, Lama3, and Lamb1, and (2) basal cell proliferation through upregulation of cyclin-D1 and suppression of phospho(Ser-10) p27/Kip1, without significantly affecting the expression of epithelial markers Krt12, E-cadherin, and ß-catenin.


Assuntos
Proliferação de Células/fisiologia , Epitélio Corneano/citologia , Homeostase/fisiologia , Fatores de Transcrição Kruppel-Like/fisiologia , Animais , Antibacterianos/farmacologia , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Desmogleína 1/metabolismo , Doxiciclina/farmacologia , Células Epiteliais/citologia , Técnica Indireta de Fluorescência para Anticorpo , Expressão Gênica , Antígeno Ki-67/genética , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas de Junções Íntimas/metabolismo
12.
Dev Biol ; 422(2): 171-185, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27940158

RESUMO

A critical transition occurs near mid-gestation of mammalian pregnancy. Prior to this transition, low concentrations of oxygen (hypoxia) signaling through Hypoxia Inducible Factor (HIF) functions as a morphogen for the placenta and fetal organs. Subsequently, functional coupling of the placenta and fetal cardiovascular system for oxygen (O2) transport is required to support the continued growth and development of the fetus. Here we tested the hypothesis that Hif-1α is required in maternal cells for placental morphogenesis and function. We used Tamoxifen-inducible Cre-Lox to inactivate Hif-1α in maternal tissues at E8.5 (MATcKO), and used ODD-Luciferase as a reporter of hypoxia in placenta and fetal tissues. MATcKO of Hif-1α reduced the number of uterine natural killer (uNK) cells and Tpbpa-positve trophoblast cells in the maternal decidua at E13.5 -15.5. There were dynamic changes in all three layers of E13.5-15.5 MATcKO placenta. Of note was the under-development of the labyrinth at E15.5 associated with reduced Ki67 and increased TUNEL staining consistent with reduced cell proliferation and increased apoptosis. Labyrinth defects were particularly evident in placentas connected to effectively HIF-1α heterozygous null embryos. MATcKO had no effect on basal ODD-Luciferase activity in fetal organs (heart, liver, brain) at any stage, but at E13.5-15.5 resulted in enhanced induction of the ODD-Luciferase hypoxia reporter when the dam's inspired O2 was reduced to 8% for 4 hours. MATcKO also slowed the growth after E13.5 of fetuses that were effectively heterozygous for Hif-1α, with most being non-viable at E15.5. The hearts of these E15.5 fetuses were abnormal with reduction in size, thickened epicardium and mesenchymal septum. We conclude that maternal HIF-1α is required for placentation including recruitment of uNK and trophoblast cells into the maternal decidua and other trophoblast cell behaviors. The placental defects render the fetus vulnerable to O2 deprivation after mid-gestation.


Assuntos
Hipóxia Celular/fisiologia , Coração/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Placenta/embriologia , Placentação/genética , Animais , Apoptose , Proliferação de Células , Feminino , Coração/crescimento & desenvolvimento , Cardiopatias Congênitas/embriologia , Marcação In Situ das Extremidades Cortadas , Células Matadoras Naturais/imunologia , Camundongos , Oxigênio/metabolismo , Placenta/anormalidades , Placenta/citologia , Placentação/fisiologia , Gravidez , Proteínas da Gravidez/metabolismo , Trofoblastos/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 310(11): H1715-24, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084390

RESUMO

The cGMP activated kinase cGK1α is targeted to its substrates via leucine zipper (LZ)-mediated heterodimerization and thereby mediates vascular smooth muscle (VSM) relaxation. One target is myosin phosphatase (MP), which when activated by cGK1α results in VSM relaxation even in the presence of activating calcium. Variants of MP regulatory subunit Mypt1 are generated by alternative splicing of the 31 nt exon 24 (E24), which, by changing the reading frame, codes for isoforms that contain or lack the COOH-terminal LZ motif (E24+/LZ-; E24-/LZ+). Expression of these isoforms is vessel specific and developmentally regulated, modulates in disease, and is proposed to confer sensitivity to nitric oxide (NO)/cGMP-mediated vasorelaxation. To test this, mice underwent Tamoxifen-inducible and smooth muscle-specific knockout of E24 (E24 cKO) after weaning. Deletion of a single allele of E24 (shift to Mypt1 LZ+) enhanced vasorelaxation of first-order mesenteric arteries (MA1) to diethylamine-NONOate (DEA/NO) and to cGMP in permeabilized and calcium-clamped arteries and lowered blood pressure. There was no further effect of deletion of both E24 alleles, indicating high sensitivity to shift of Mypt1 isoforms. However, a unique property of MA1s from homozygous E24 cKOs was significantly reduced force generation to α-adrenergic activation. Furthermore 2 wk of high-salt (4% NaCl) diet increased MA1 force generation to phenylephrine in control mice, a response that was markedly suppressed in the E24 cKO homozygotes. Thus Mypt1 E24 splice variants tune arterial reactivity and could be worthy targets for lowering vascular resistance in disease states.


Assuntos
Artérias Mesentéricas/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Vasodilatação/efeitos dos fármacos , Alelos , Processamento Alternativo , Animais , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Isoformas de Proteínas/metabolismo , Cloreto de Sódio/farmacologia
14.
J Am Heart Assoc ; 3(3): e000841, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855117

RESUMO

BACKGROUND: The heart develops under reduced and varying oxygen concentrations, yet there is little understanding of oxygen metabolism in the normal and mal-development of the heart. Here we used a novel reagent, the ODD-Luc hypoxia reporter mouse (oxygen degradation domain, ODD) of Hif-1α fused to Luciferase (Luc), to assay the activity of the oxygen sensor, prolyl hydroxylase, and oxygen reserve, in the developing heart. We tested the role of hypoxia-dependent responses in heart development by targeted inactivation of Hif-1α. METHODS AND RESULTS: ODD-Luciferase activity was 14-fold higher in mouse embryonic day 10.5 (E10.5) versus adult heart and liver tissue lysates. ODD-Luc activity decreased in 2 stages, the first corresponding with the formation of a functional cardiovascular system for oxygen delivery at E15.5, and the second after birth consistent with complete oxygenation of the blood and tissues. Reduction of maternal inspired oxygen to 8% for 4 hours caused minimal induction of luciferase activity in the maternal tissues but robust induction in the embryonic tissues in proportion to the basal activity, indicating a lack of oxygen reserve, and corresponding induction of a hypoxia-dependent gene program. Bioluminescent imaging of intact embryos demonstrated highest activity in the outflow portion of the E13.5 heart. Hif-1α inactivation or prolonged hypoxia caused outflow and septation defects only when targeted to this specific developmental window. CONCLUSIONS: Low oxygen concentrations and lack of oxygen reserve during a critical phase of heart organogenesis may provide a basis for vulnerability to the development of common septation and conotruncal heart defects.


Assuntos
Cardiopatias Congênitas/etiologia , Hipóxia/embriologia , Animais , Coração/embriologia , Cardiopatias Congênitas/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Miocárdio/química , Miocárdio/patologia , Oxigênio/análise , Reação em Cadeia da Polimerase em Tempo Real
16.
Exp Eye Res ; 116: 205-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24076321

RESUMO

Conditional disruption of Klf4 in the surface ectoderm-derived tissues of the eye results in defective cornea, conjunctiva and the lens. This report describes the effects of disruption of Klf4 in the lens in greater detail. Expression of Klf4, first detected in the embryonic day-12 (E12) mouse lens, peaked at E16 and was decreased in later stages. Early embryonic disruption of Klf4 resulted in a smaller lens with cortical vacuolation and nuclear opacity. Microarray comparison of Klf4CN and WT lens transcriptomes revealed fewer changes in the E16.5 (59 increases, 20 decreases of >1.5-fold) than the PN56 Klf4CN lens (239 increases, 182 decreases of >2-fold). Klf4-target genes in the lens were distinct from those previously identified in the cornea, suggesting disparate functions for Klf4 in these functionally related tissues. Transcripts encoding different crystallins were down-regulated in the Klf4CN lens. Shsp/αB-crystallin promoter activity was stimulated upon co-transfection with pCI-Klf4. Mitochondrial density was significantly higher in the Klf4CN lens epithelial cells, consistent with mitochondrial dysfunction being the most significantly affected pathway within the PN56 Klf4CN lens. The Klf4CN lens contained elevated levels of Alox12 and Alox15 transcripts, less reduced glutathione (GSH) and more oxidized glutathione (GSSG) than the WT, suggesting that it is oxidatively stressed. Although the expression of 2087 genes was modulated during WT lens maturation, transcripts encoding crystallins were abundant at E16.5 and remained stable at PN56. Among the 1065 genes whose expression increased during WT lens maturation, there were 104 Klf4-target genes (9.8%) with decreased expression in the PN56 Klf4CN lens. Taken together, these results demonstrate that Klf4 expression is developmentally regulated in the mouse lens, where it controls the expression of genes associated with lens maturation and redox homeostasis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , Cristalino/metabolismo , RNA/genética , Animais , Células Cultivadas , Hibridização In Situ , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/biossíntese , Cristalino/citologia , Cristalino/embriologia , Camundongos , Camundongos Knockout , Análise Serial de Proteínas , Dedos de Zinco
17.
PLoS One ; 7(9): e44771, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024760

RESUMO

BACKGROUND: Klf5 plays an important role in maturation and maintenance of the mouse ocular surface. Here, we quantify WT and Klf5-conditional null (Klf5CN) corneal gene expression, identify Klf5-target genes and compare them with the previously identified Klf4-target genes to understand the molecular basis for non-redundant functions of Klf4 and Klf5 in the cornea. METHODOLOGY/PRINCIPAL FINDINGS: Postnatal day-11 (PN11) and PN56 WT and Klf5CN corneal transcriptomes were quantified by microarrays to compare gene expression in maturing WT corneas, identify Klf5-target genes, and compare corneal Klf4- and Klf5-target genes. Whole-mount corneal immunofluorescent staining was employed to examine CD45+ cell influx and neovascularization. Effect of Klf5 on expression of desmosomal components was studied by immunofluorescent staining and transient co-transfection assays. Expression of 714 and 753 genes was increased, and 299 and 210 genes decreased in PN11 and PN56 Klf5CN corneas, respectively, with 366 concordant increases and 72 concordant decreases. PN56 Klf5CN corneas shared 241 increases and 98 decreases with those previously described in Klf4CN corneas. Xenobiotic metabolism related pathways were enriched among genes decreased in Klf5CN corneas. Expression of angiogenesis and immune response-related genes was elevated, consistent with neovascularization and CD45+ cell influx in Klf5CN corneas. Expression of 1574 genes was increased and 1915 genes decreased in WT PN56 compared with PN11 corneas. Expression of ECM-associated genes decreased, while that of solute carrier family members increased in WT PN56 compared with PN11 corneas. Dsg1a, Dsg1b and Dsp were down-regulated in Klf5CN corneas and their corresponding promoter activities were stimulated by Klf5 in transient co-transfection assays. CONCLUSIONS/SIGNIFICANCE: Differences between PN11 and PN56 corneal Klf5-target genes reveal dynamic changes in functions of Klf5 during corneal maturation. Klf5 contributes to corneal epithelial homeostasis by regulating the expression of desmosomal components. Klf4- and Klf5-target genes are largely distinct, consistent with their non-redundant roles in the mouse cornea.


Assuntos
Córnea/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Córnea/irrigação sanguínea , Córnea/imunologia , Desmogleína 1/genética , Desmogleína 1/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Redes Reguladoras de Genes , Fator 4 Semelhante a Kruppel , Antígenos Comuns de Leucócito/metabolismo , Metaloproteinases da Matriz/genética , Camundongos , Neovascularização Fisiológica/genética , Reprodutibilidade dos Testes , Transdução de Sinais
18.
Dev Biol ; 356(1): 5-18, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21600198

RESUMO

Members of the Krüppel-like family of transcription factors regulate diverse developmental processes in various organs. Previously, we have demonstrated the role of Klf4 in the mouse ocular surface. Herein, we determined the role of the structurally related Klf5, using Klf5-conditional null (Klf5CN) mice derived by mating Klf5-LoxP and Le-Cre mice. Klf5 mRNA was detected as early as embryonic day 12 (E12) in the cornea, conjunctiva and eyelids, wherein its expression increased during development. Though the embryonic eye morphogenesis was unaltered in the Klf5CN mice, postnatal maturation was defective, resulting in smaller eyes with swollen eyelids that failed to separate properly. Klf5CN palpebral epidermis was hyperplastic with 7-9 layers of keratinocytes, compared with 2-3 in the wild type (WT). Klf5CN eyelid hair follicles and sebaceous glands were significantly enlarged, and the meibomian glands malformed. Klf5CN lacrimal glands displayed increased vasculature and large number of infiltrating cells. Klf5CN corneas were translucent, thicker with defective epithelial basement membrane and hypercellular stroma. Klf5CN conjunctiva lacked goblet cells, demonstrating that Klf5 is required for conjunctival goblet cell development. The number of Ki67-positive mitotic cells was more than doubled, consistent with the increased number of Klf5CN ocular surface epithelial cells. Co-ablation of Klf4 and Klf5 resulted in a more severe ocular surface phenotype compared with Klf4CN or Klf5CN, demonstrating that Klf4 and Klf5 share few if any, redundant functions. Thus, Klf5CN mice provide a useful model for investigating ocular surface pathologies involving meibomian gland dysfunction, blepharitis, corneal or conjunctival defects.


Assuntos
Túnica Conjuntiva/anormalidades , Córnea/anormalidades , Pálpebras/anormalidades , Fatores de Transcrição Kruppel-Like/fisiologia , Aparelho Lacrimal/anormalidades , Glândulas Tarsais/anormalidades , Animais , Túnica Conjuntiva/crescimento & desenvolvimento , Córnea/crescimento & desenvolvimento , Pálpebras/crescimento & desenvolvimento , Células Caliciformes/patologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Aparelho Lacrimal/crescimento & desenvolvimento , Glândulas Tarsais/crescimento & desenvolvimento , Camundongos , Camundongos Mutantes , Deleção de Sequência
19.
Invest Ophthalmol Vis Sci ; 52(3): 1762-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21051695

RESUMO

PURPOSE: Previously, the authors showed that Klf4-conditional null (Klf4CN) corneas display epithelial fragility. Here, they investigated the mechanism by which Klf4 regulates corneal epithelial barrier function. METHODS: Klf4CN mice were generated by breeding Le-Cre with Klf4-LoxP mice. Fluorescein staining was used to test the corneal barrier function. RT-PCR, immunoblots, and immunofluorescence were used to detect the expression of cell junctional proteins. The effect of Klf4 on promoter activities was measured by transient cotransfection assays. Trans-epithelial electrical resistance (TEER) was used to measure the barrier-forming ability of control or anti-KLF4 siRNA-treated cells. RESULTS: Increased fluorescein staining and decreased tight junction protein Tjp1 expression demonstrated that the Klf4CN corneal epithelial barrier function is defective. Expression of desmosomal components Dsp, Dsg-1a, and Dsg-1b was downregulated in the Klf4CN corneas, and their corresponding promoter activities were upregulated by Klf4 in transient cotransfection assays. Hemidesmosomal α3- and ß4-integrin levels were not affected even though there were fewer hemidesmosomes in the Klf4CN corneas. The basement membrane components laminin-α5, -α3, -ß3, and -ß1-1 were downregulated, suggesting that the disrupted basement membrane is responsible for fewer hemidesmosomes in the Klf4CN cornea. Tight junction proteins OCLN1 and TJP1were downregulated in anti-KLF4 siRNA-treated cells, which failed to develop epithelial barrier function as measured by TEER. CONCLUSIONS: Klf4 contributes to corneal epithelial barrier function by upregulating the expression of functionally related subsets of cell junctional proteins and basement membrane components.


Assuntos
Epitélio Corneano/metabolismo , Fatores de Transcrição Kruppel-Like/fisiologia , Junções Íntimas/metabolismo , Animais , Membrana Basal/metabolismo , Células Cultivadas , Fluoresceína/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Immunoblotting , Fator 4 Semelhante a Kruppel , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Permeabilidade , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Regulação para Cima/fisiologia , Dedos de Zinco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...