Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-481163

RESUMO

Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for [~]9-10 months after the primary 2-dose mRNA vaccine series, as well as for [~]3 months after a 3rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and [~]40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3rd dose. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections. Graphical Summary O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=123 SRC="FIGDIR/small/481163v1_ufig1.gif" ALT="Figure 1"> View larger version (20K): org.highwire.dtl.DTLVardef@123d2d9org.highwire.dtl.DTLVardef@e7db82org.highwire.dtl.DTLVardef@1fc73deorg.highwire.dtl.DTLVardef@11b21f9_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263686

RESUMO

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. In this study, through a fine-needle-aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant (KTX) recipients. We found that, unlike healthy subjects, KTX recipients presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cells, SARS-CoV-2 receptor-binding-domain-specific memory B cells and neutralizing antibodies. KTX recipients also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals, and suggest a GC-origin for certain humoral and memory B cell responses following mRNA vaccination.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-457229

RESUMO

SARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naive and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination. Antibody and neutralizing titers decayed from peak levels but remained detectable in all subjects at 6 months post-vaccination. Functional memory B cell responses, including those specific for the receptor binding domain (RBD) of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, were also efficiently generated by mRNA vaccination and continued to increase in frequency between 3 and 6 months post-vaccination. Notably, most memory B cells induced by mRNA vaccines were capable of cross-binding variants of concern, and B cell receptor sequencing revealed significantly more hypermutation in these RBD variant-binding clones compared to clones that exclusively bound wild-type RBD. Moreover, the percent of variant cross-binding memory B cells was higher in vaccinees than individuals who recovered from mild COVID-19. mRNA vaccination also generated antigen-specific CD8+ T cells and durable memory CD4+ T cells in most individuals, with early CD4+ T cell responses correlating with humoral immunity at later timepoints. These findings demonstrate robust, multi-component humoral and cellular immune memory to SARS-CoV-2 and current variants of concern for at least 6 months after mRNA vaccination. Finally, we observed that boosting of pre-existing immunity with mRNA vaccination in SARS-CoV-2 recovered individuals primarily increased antibody responses in the short-term without significantly altering antibody decay rates or long-term B and T cell memory. Together, this study provides insights into the generation and evolution of vaccine-induced immunity to SARS-CoV-2, including variants of concern, and has implications for future booster strategies. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=146 HEIGHT=200 SRC="FIGDIR/small/457229v1_ufig1.gif" ALT="Figure 1"> View larger version (32K): org.highwire.dtl.DTLVardef@16c64b1org.highwire.dtl.DTLVardef@146ca3aorg.highwire.dtl.DTLVardef@86b7edorg.highwire.dtl.DTLVardef@956879_HPS_FORMAT_FIGEXP M_FIG C_FIG

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-456441

RESUMO

Prevention of COVID-19 is widely believed to depend on neutralization of SARS-CoV-2 by vaccine-induced humoral immunity1,2, raising concern that emerging escape variants may perpetuate the pandemic3-6. Here we show that a single intramuscular injection of Adeno-Associated Virus-6 (AAV6) or AAV9 encoding a modified, N-terminal domain deleted ({Delta}NTD) spike protein induces robust cellular immunity and provides long-term protection in k18-hACE2 transgenic mice from lethal SARS-CoV-2 challenge, associated weight loss and pneumonia independent of vaccine-induced neutralizing humoral immunity. In both mice and macaques, vaccine-induced cellular immunity results in the clearance of transduced muscle fibers coincident with macrophage and CD8+ cytotoxic T cell infiltration at the site of immunization. Additionally, mice demonstrate a strong Type-1 polarized cellular immunophenotype and equivalent ex vivo T cell reactivity to peptides of wt and alpha (B.1.1.7) variant spike. These studies demonstrate not only that AAV6 and AAV9 can function as effective vaccine platforms, but also that vaccines can provide long-term efficacy primarily through the induction of cellular immunity. The findings may provide an alternative approach to containment of the evolving COVID-19 pandemic and have broader implications for the development of variant-agnostic universal vaccines against a wider range of pathogens.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259389

RESUMO

SARS-CoV-2 mRNA vaccination in healthy individuals generates effective immune protection against COVID-19. Little is known, however, about the SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses in patients with multiple sclerosis on anti-CD20 (MS-aCD20) monotherapy following SARS-CoV-2 mRNA vaccination. Treatment with aCD20 significantly reduced Spike and RBD specific antibody and memory B cell responses in most patients, an effect that was ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. In contrast, all MS-aCD20 patients generated antigen-specific CD4 and CD8 T-cell responses following vaccination. However, treatment with aCD20 skewed these responses compromising circulating Tfh responses and augmenting CD8 T cell induction, while largely preserving Th1 priming. These data also revealed underlying features of coordinated immune responses following mRNA vaccination. Specifically, the MS-aCD20 patients who failed to generate anti-RBD IgG had the most severe defect in cTfh cell responses and more robust CD8 T cell responses compared to those who generated anti-RBD IgG, whose T cell responses were more similar to healthy controls. These data define the nature of SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients, and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making, patient education and public health policy for patients treated with aCD20 and other immunosuppressed patients.

6.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-440862

RESUMO

The SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses in healthy individuals following mRNA vaccination. Vaccination induced rapid near-maximal antigen-specific CD4+ T cell responses in all subjects after the first vaccine dose. CD8+ T cell responses developed gradually after the first and second dose and were variable. Vaccine-induced T cells had central memory characteristics and included both Tfh and Th1 subsets, similar to natural infection. Th1 and Tfh responses following the first dose predicted post-boost CD8+ T cell and neutralizing antibody levels, respectively. Integrated analysis of 26 antigen-specific T cell and humoral responses revealed coordinated features of the immune response to vaccination. Lastly, whereas booster vaccination improved CD4+ and CD8+ T cell responses in SARS-CoV-2 naive subjects, the second vaccine dose had little effect on T cell responses in SARS-CoV-2 recovered individuals. Thus, longitudinal analysis revealed robust T cell responses to mRNA vaccination and highlighted early induction of antigen-specific CD4+ T cells. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=192 HEIGHT=200 SRC="FIGDIR/small/440862v1_ufig1.gif" ALT="Figure 1"> View larger version (52K): org.highwire.dtl.DTLVardef@db812dorg.highwire.dtl.DTLVardef@fdc549org.highwire.dtl.DTLVardef@a34663org.highwire.dtl.DTLVardef@1621e52_HPS_FORMAT_FIGEXP M_FIG C_FIG

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...