Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0268072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35511780

RESUMO

Pseudomonas strain NCIMB10586, in the P. fluorescens subgroup, produces the polyketide antibiotic mupirocin, and has potential as a host for industrial production of a range of valuable products. To underpin further studies on its genetics and physiology, we have used a combination of standard and atypical approaches to achieve a quality of the genome sequence and annotation, above current standards for automated pathways. Assembly of Illumina reads to a PacBio genome sequence created a retrospectively hybrid assembly, identifying and fixing 415 sequencing errors which would otherwise affect almost 5% of annotated coding regions. Our annotation pipeline combined automation based on related well-annotated genomes and stringent, partially manual, tests for functional features. The strain was close to P. synxantha and P. libaniensis and was found to be highly similar to a strain being developed as a weed-pest control agent in Canada. Since mupirocin is a secondary metabolite whose production is switched on late in exponential phase, we carried out RNAseq analysis over an 18 h growth period and have developed a method to normalise RNAseq samples as a group, rather than pair-wise. To review such data we have developed an easily interpreted way to present the expression profiles across a region, or the whole genome at a glance. At the 2-hour granularity of our time-course, the mupirocin cluster increases in expression as an essentially uniform bloc, although the mupirocin resistance gene stands out as being expressed at all the time points.


Assuntos
Mupirocina , Pseudomonas fluorescens , Antibacterianos/metabolismo , Anotação de Sequência Molecular , Pseudomonas fluorescens/genética , Estudos Retrospectivos , Análise de Sequência de DNA/métodos
2.
Nat Commun ; 8(1): 1206, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089518

RESUMO

Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines. The method is exemplified in the rapamycin biosynthetic gene cluster where, in a single experiment, multiple strains were isolated producing new members of a rapamycin-related family of polyketides. The process mimics, but significantly accelerates, a plausible mechanism of natural evolution for modular polyketide synthases. Detailed sequence analysis of the recombinant genes provides unique insight into the design principles for constructing useful synthetic assembly-line multienzymes.


Assuntos
Vias Biossintéticas/genética , Evolução Molecular , Variação Genética , Família Multigênica , Bioengenharia , Policetídeo Sintases/genética , Sirolimo/química , Sirolimo/metabolismo
3.
Chem Biol ; 22(2): 285-92, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25619934

RESUMO

Inhibition of host-encoded targets, such as the cyclophilins, provides an opportunity to generate potent high barrier to resistance antivirals for the treatment of a broad range of viral diseases. However, many host-targeted agents are natural products, which can be difficult to optimize using synthetic chemistry alone. We describe the orthogonal combination of bioengineering and semisynthetic chemistry to optimize the drug-like properties of sanglifehrin A, a known cyclophilin inhibitor of mixed nonribosomal peptide/polyketide origin, to generate the drug candidate NVP018 (formerly BC556). NVP018 is a potent inhibitor of hepatitis B virus, hepatitis C virus (HCV), and HIV-1 replication, shows minimal inhibition of major drug transporters, and has a high barrier to generation of both HCV and HIV-1 resistance.


Assuntos
Antivirais/química , Ciclofilinas/antagonistas & inibidores , Lactonas/química , Oxazinas/química , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Bioengenharia , Ciclofilinas/metabolismo , Modelos Animais de Doenças , Cães , Infecções por HIV/prevenção & controle , HIV-1/fisiologia , Meia-Vida , Células Hep G2 , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Vírus da Hepatite B/fisiologia , Humanos , Lactonas/metabolismo , Lactonas/farmacologia , Camundongos , Camundongos SCID , Oxazinas/metabolismo , Oxazinas/farmacologia , Ratos , Streptomyces/química , Streptomyces/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA