Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Nanoscale ; 13(40): 17028-17039, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34622262

RESUMO

Colloidal semiconductor nanocrystals with tunable optical and electronic properties are opening up exciting opportunities for high-performance optoelectronics, photovoltaics, and bioimaging applications. Identifying the optimal synthesis conditions and screening of synthesis recipes in search of efficient synthesis pathways to obtain nanocrystals with desired optoelectronic properties, however, remains one of the major bottlenecks for accelerated discovery of colloidal nanocrystals. Conventional strategies, often guided by limited understanding of the underlying mechanisms remain expensive in both time and resources, thus significantly impeding the overall discovery process. In response, an autonomous experimentation platform is presented as a viable approach for accelerated synthesis screening and optimization of colloidal nanocrystals. Using a machine-learning-based predictive synthesis approach, integrated with automated flow reactor and inline spectroscopy, indium phosphide nanocrystals are autonomously synthesized. Their polydispersity for different target absorption wavelengths across the visible spectrum is simultaneously optimized during the autonomous experimentation, while utilizing minimal self-driven experiments (less than 50 experiments within 2 days). Starting with no-prior-knowledge of the synthesis, an ensemble neural network is trained through autonomous experiments to accurately predict the reaction outcome across the entire synthesis parameter space. The predicted parameter space map also provides new nucleation-growth kinetic insights to achieve high monodispersity in size of colloidal nanocrystals.

2.
ACS Appl Mater Interfaces ; 13(13): 15132-15142, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764731

RESUMO

The electrochemical reduction of CO2 (ECO2R) is a promising method for reducing CO2 emissions and producing carbon-neutral fuels if long-term durability of electrodes can be achieved by identifying and addressing electrode degradation mechanisms. This work investigates the degradation of gas diffusion electrodes (GDEs) in a flowing, alkaline CO2 electrolyzer via the formation of carbonate deposits on the GDE surface. These carbonate deposits were found to impede electrode performance after only 6 h of operation at current densities ranging from -50 to -200 mA cm-2. The rate of carbonate deposit formation on the GDE surface was determined to increase with increasing electrolyte molarity and became more prevalent in K+-containing as opposed to Cs+-containing electrolytes. Electrolyte composition and concentration also had significant effects on the morphology, distribution, and surface coverage of the carbonate deposits. For example, carbonates formed in K+-containing electrolytes formed concentrated deposit regions of varying morphology on the GDE surface, while those formed in Cs+-containing electrolytes appeared as small crystals, well dispersed across the electrode surface. Both deposits occluding the catalyst layer surface and those found within the microporous layer and carbon fiber substrate of the electrode were found to diminish performance in ECO2R, leading to rapid loss of CO production after ∼50% of the catalyst layer surface was occluded. Additionally, carbonate deposits reduced GDE hydrophobicity, leading to increased flooding and internal deposits within the GDE substrate. Electrolyte engineering-based solutions are suggested for improved GDE durability in future work.

3.
Sci Rep ; 10(1): 13320, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32770112

RESUMO

This study explored the impact of gold nanoparticles on the metabolic activity and morphology of human pulmonary endothelial cell monolayers. We developed a gold nanoparticle library of three different sizes and two surface chemistries that include anionic citrate and the cationic polyelectrolyte poly(allylamine hydrochloride). The nanoparticles were characterized in cell culture medium to assess how their physical properties are altered after exposure to biological fluids. A bovine serum albumin pretreatment protocol was developed to stabilize the nanoparticles in cell culture medium. Results of this study show that an 18 h exposure of human pulmonary artery endothelial cells to the different nanoparticles modestly affects cellular metabolic activity. However, nanoparticle exposure perturbs the cortical actin networks and induces the formation of intercellular gaps. In particular, exposure to the poly(allylamine hydrochloride)-coated particles reduces the area of cell-cell junctions-a change that correlates with increased leakiness of endothelial barriers. The presence of excess polyelectrolyte capping agents in the supernatant of poly(allylamine hydrochloride)-coated nanoparticles significantly impacts endothelial morphology. Pretreatment of the particle supernatant with bovine serum albumin mitigates the negative effects of free or bound polyelectrolytes on endothelial cell monolayers.


Assuntos
Actinas/metabolismo , Barreira Alveolocapilar/metabolismo , Células Endoteliais/metabolismo , Ouro , Junções Intercelulares/metabolismo , Nanopartículas Metálicas , Barreira Alveolocapilar/patologia , Células Cultivadas , Células Endoteliais/patologia , Ouro/efeitos adversos , Ouro/química , Ouro/farmacologia , Humanos , Junções Intercelulares/patologia , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química
4.
J Pharm Sci ; 109(10): 3078-3085, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32679216

RESUMO

In the pharmaceutical industry, amorphous solid dispersion can be utilized to enhance the solubility, hence bioavailability, of poorly solubility active pharmaceutical ingredients owing to the higher free energy of the amorphous state. Measuring the concentration, size and spatial distribution of crystalline API particles that may be present in amorphous solid dispersions (ASD) is critical to understanding product performance and developing improved formulations. In this study X-Ray Microscopy (XRM) was used to nondestructively measure these attributes in ASDs. Model tablets of amorphous fenofibrate in a copovidone matrix spiked with known concentrations of crystalline fenofibrate were examined by XRM to measure the concentration, size and distribution of crystalline particles in the tablets. Data collection and analysis conditions were evaluated and reported. XRM images showed contrast between the crystalline API and the amorphous matrix of the tablet. Image analysis using basic thresholding provided quantitative and distribution data of the crystallinity present. Crystals as small as 10 µm were detected and practical quantitation limits of 0.2% (w/w of total tablet) crystallinity were demonstrated. The aspects of manual data thresholding were tested for operator influence and threshold selection and found to be robust. This technique was demonstrated to provide quantitative measures of crystallinity below standard X-Ray Powder Diffraction (XRPD) techniques, provide three-dimensional information regarding size, shape and distribution of API crystals and can be performed nondestructively.


Assuntos
Fenofibrato , Cristalização , Microscopia , Solubilidade , Comprimidos , Difração de Raios X , Raios X
5.
ChemSusChem ; 13(5): 855-875, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31863564

RESUMO

The world emits over 14 gigatons of CO2 in excess of what can be remediated by natural processes annually, contributing to rising atmospheric CO2 levels and increasing global temperatures. The electrochemical reduction of CO2 (CO2 RR) to value-added chemicals and fuels has been proposed as a method for reusing these excess anthropogenic emissions. While state-of-the-art CO2 RR systems exhibit high current densities and faradaic efficiencies, research on long-term electrode durability, necessary for this technology to be implemented commercially, is lacking. Previous reviews have focused mainly on the CO2 electrolyzer performance without considering durability. In this Review, the need for research into high-performing and durable CO2 RR systems is stressed by summarizing the state-of-the-art with respect to durability. Various failure modes observed are also reported and a protocol for standard durability testing of CO2 RR systems is proposed.

6.
Lab Chip ; 19(15): 2598-2609, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31259340

RESUMO

Early reaction intermediates in protein folding, such as those resulting in ß-amyloid formation due to transient misfolding, emerge within a few hundred microseconds. Here, we report a method to obtain sub-millisecond temporal resolution and molecular structural information of protein (mis-)folding events by using a microfluidic continuous-flow mixer (MCFM) in combination with Fourier transform infrared (FT-IR) imaging. The MCFMs are made out of cyclic olefin copolymer (COC) films, because this approach allows for rapid prototyping of different mixer designs. Furthermore, COC offers high IR transparency between 1500 and 2500 cm-1, thus maximizing the signal to noise ratio of the IR data obtained from a sample of interest. By combining narrow and wide channel widths in MCFM design, the platform provides fast mixing (460 µs) to induce protein (mis-)folding, and it maximizes the residence time in the observing area, so a wide range of reaction timescales can be captured in a single image. We validated the platform for its ability to induce and observe sub-millisecond processes by studying two systems: (i) the mixing of H2O and D2O and (ii) the mixing induced deprotonation of carboxylic acid. First, we observed excellent agreement between simulated and experimental data of the on-chip mixing of H2O and D2O, which verifies the distance-reaction time relationships based on simulation. Second, deprotonation of carboxylic acid by on-chip mixing with sodium hydroxide solution validates the ability of the platform to induce rapid pH jump that is needed for some biomolecular reactions. Finally, we studied the methanol-induced partial-unfolding of ubiquitin to show that our platform can be used to study biomolecular events 'on-pathway' using FT-IR imaging. We successfully extracted kinetic and structural details of the conformational changes along the channel. Our results are in agreement with prior studies that required more elaborate stopped flow approaches to acquire data for different time points. In summary, the reported method uses an easy-to-fabricate microfluidic mixer platform integrated with hyperspectral FT-IR imaging for rapid acquisition of structural details and kinetic parameters of biomolecular reactions. This approach does not need stopped flow or molecular imaging probes, as required respectively for alternative FT-IR spectroscopy and fluorescence approaches.


Assuntos
Dispositivos Lab-On-A-Chip , Imagem Molecular/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Acético/química , Óxido de Deutério/química , Concentração de Íons de Hidrogênio , Conformação Proteica , Desdobramento de Proteína , Razão Sinal-Ruído , Ubiquitina/química
7.
J Am Chem Soc ; 140(17): 5791-5797, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29620896

RESUMO

Electrodeposition of CuAg alloy films from plating baths containing 3,5-diamino-1,2,4-triazole (DAT) as an inhibitor yields high surface area catalysts for the active and selective electroreduction of CO2 to multicarbon hydrocarbons and oxygenates. EXAFS shows the co-deposited alloy film to be homogeneously mixed. The alloy film containing 6% Ag exhibits the best CO2 electroreduction performance, with the Faradaic efficiency for C2H4 and C2H5OH production reaching nearly 60 and 25%, respectively, at a cathode potential of just -0.7 V vs RHE and a total current density of ∼ - 300 mA/cm2. Such high levels of selectivity at high activity and low applied potential are the highest reported to date. In situ Raman and electroanalysis studies suggest the origin of the high selectivity toward C2 products to be a combined effect of the enhanced stabilization of the Cu2O overlayer and the optimal availability of the CO intermediate due to the Ag incorporated in the alloy.

8.
ACS Appl Mater Interfaces ; 10(12): 10480-10489, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29516715

RESUMO

Nanosizing is rapidly emerging as an alternative approach to enhance solubility and thus the bioavailability of poorly aqueous soluble active pharmaceutical ingredients (APIs). Although numerous techniques have been developed to perform nanosizing of API crystals, precise control and modulation of their size in an energy and material efficient manner remains challenging. In this study, we present meniscus-guided solution coating as a new technique to produce pharmaceutical thin films of nanoscale thickness with controlled morphology. We demonstrate control of aspirin film thickness over more than 2 orders of magnitude, from 30 nm to 1.5 µm. By varying simple process parameters such as the coating speed and the solution concentration, the aspirin film morphology can also be modulated by accessing different coating regimes, namely the evaporation regime and the Landau-Levich regime. Using ellipticine-a poorly water-soluble anticancer drug-as another model compound, we discovered a new polymorph kinetically trapped during solution coating. Furthermore, the polymorphic outcome can be controlled by varying coating conditions. We further performed layer-by-layer coating of multilayer nanocomposites, with alternating thin films of ellipticine and a biocompatible polymer, which demonstrate the potential of additive manufacturing of multidrug-personalized dosage forms using this approach.

9.
Lab Chip ; 18(6): 944-954, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29469138

RESUMO

Crystallization of membrane proteins is a critical step for uncovering atomic resolution 3-D structures and elucidating structure-function relationships. Microseeding, the process of transferring sub-microscopic crystal nuclei from initial screens into new crystallization experiments, is an effective, yet underutilized approach to grow crystals suitable for X-ray crystallography. Here, we report simplified methods for crystallization of membrane proteins that utilize microseeding in X-ray transparent microfluidic chips. First, a microfluidic method for introduction of microseed dilutions into metastable crystallization experiments is demonstrated for photoactive yellow protein and cytochrome bo3 oxidase. As microseed concentration decreased, the number of crystals decreased while the average size increased. Second, we demonstrate a microfluidic chip for microseed screening, where many crystallization conditions were formulated on-chip prior to mixing with microseeds. Crystallization composition, crystal size, and diffraction data were collected and mapped on phase diagrams, which revealed that crystals of similar diffraction quality and size typically grow in distinct regions of the phase diagram.


Assuntos
Proteínas de Membrana/química , Técnicas Analíticas Microfluídicas , Cristalização , Tamanho da Partícula , Raios X
10.
Biomicrofluidics ; 11(5): 054116, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29152027

RESUMO

Regions of hypoxia are common in solid tumors and are associated with enhanced malignancy, metastasis, and chemo/radio resistance. Real-time hypoxic cellular experimentation is challenging due to the constant need for oxygen control. Most microfluidic platforms developed thus far for hypoxic cell studies are burdened by complex design parameters and are difficult to use for uninitiated investigators. However, open-well microfluidic platforms enable short and long term hypoxic cell studies with an ease of use workflow. Specifically, open-well platforms enable manipulation and addition of cells, media, and reagents using a micropipette for hypoxic cell studies in tunable dissolved oxygen concentrations as low 0.3 mg/l. We analyzed design considerations for open-well microfluidic platforms such as media height, membrane thickness, and impermeable barriers to determine their effects on the amount of dissolved oxygen within the platform. The oxygen concentration was determined by experimental measurements and computational simulations. To examine cell behavior under controlled oxygen conditions, hypoxia-induced changes to hypoxia inducible factor activity and the mitochondrial redox environment were studied. A fluorescent reporter construct was used to monitor the stabilization of hypoxia inducible factors 1α and 2α throughout chronic hypoxia. Reporter construct fluorescence intensity inversely correlated with dissolved oxygen in the medium, as expected. Additionally, the glutathione redox poise of the mitochondrial matrix in living cancer cells was monitored throughout acute hypoxia with a genetically encoded redox probe and was observed to undergo a reductive response to hypoxia. Overall, these studies validate an easy to use open-well platform suitable for studying complex cell behaviors in hypoxia.

11.
Chemphyschem ; 18(22): 3091-3093, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29125680
12.
Chemphyschem ; 18(22): 3274-3279, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-28985010

RESUMO

Multiple approaches will be needed to reduce the atmospheric CO2 levels, which have been linked to the undesirable effects of global climate change. The electroreduction of CO2 driven by renewable energy is one approach to reduce CO2 emissions while producing chemical building blocks, but current electrocatalysts exhibit low activity and selectivity. Here, we report the structural and electrochemical characterization of a promising catalyst for the electroreduction of CO2 to CO: Au nanoparticles supported on polymer-wrapped multiwall carbon nanotubes. This catalyst exhibits high selectivity for CO over H2 : 80-92 % CO, as well as high activity: partial current density for CO as high as 160 mA cm-2 . The observed high activity, originating from a high electrochemically active surface area (23 m2 g-1 Au), in combination with the low loading (0.17 mg cm-2 ) of the highly dispersed Au nanoparticles underscores the promise of this catalyst for efficient electroreduction of CO2 .

13.
ChemSusChem ; 10(21): 4198-4206, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-28941070

RESUMO

A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density.

14.
Biomicrofluidics ; 11(2): 024118, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28469762

RESUMO

Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å.

15.
Nanoscale ; 9(16): 5194-5204, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28397883

RESUMO

Recently, polymeric micelles self-assembled from amphiphilic polymers have been studied for various industrial and biomedical applications. This nanoparticle self-assembly typically occurs in a solvent-exchange process. In this process, the quality of the resulting particles is uncontrollably mediated by polymeric solubility and mixing conditions. Here, we hypothesized that improving the solubility of an amphiphilic polymer in an organic solvent via chemical modification while controlling the mixing rate of organic and aqueous phases would enhance control over particle morphology and size. We examined this hypothesis by synthesizing a poly(2-hydroxyethyl)aspartamide (PHEA) grafted with controlled numbers of octadecyl (C18) chains and oligovaline groups (termed "oligovaline-PHEA-C18"). The mixing rate of DMF and water was controlled either by microfluidic mixing of laminar DMF and water flows or through turbulent bulk mixing. Interestingly, oligovaline-PHEA-C18 exhibited an increased solubility in DMF compared with PHEA-C18, as demonstrated by an increase of mixing energy. In addition, increasing the mixing rate between water and DMF using the microfluidic mixer resulted in a decrease of the diameter of the resulting polymeric micelles, as compared with the particles formed from a bulk mixing process. Overall, these findings will expand the parameter space available to control particle self-assembly while also serving to improve existing nanoparticle processing techniques.

16.
J Phys Chem B ; 121(15): 3701-3717, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241731

RESUMO

The Q-cycle mechanism of the bc1 complex is now well enough understood to allow application of advanced computational approaches to the study of atomistic processes. In addition to the main features of the mechanism, these include control and gating of the bifurcated reaction at the Qo-site, through which generation of damaging reactive oxygen species is minimized. We report a new molecular dynamics model of the Rhodobacter sphaeroides bc1 complex implemented in a native membrane, and constructed so as to eliminate blemishes apparent in earlier Rhodobacter models. Unconstrained MD simulations after equilibration with ubiquinol and ubiquinone respectively at Qo- and Qi-sites show that substrate binding configurations at both sites are different in important details from earlier models. We also demonstrate a new Qo-site intermediate, formed in the sub-ms time range, in which semiquinone remains complexed with the reduced iron sulfur protein. We discuss this, and a spring-loaded mechanism for modulating interactions of the iron sulfur protein with occupants of the Qo-site, in the context of control and gating roles. Such atomistic features of the mechanism can usefully be explored through simulation, but we stress the importance of constraints from physical chemistry and biology, both in setting up a simulation and in interpreting results.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Simulação de Dinâmica Molecular , Rhodobacter sphaeroides/enzimologia
17.
Bioconjug Chem ; 28(4): 986-994, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28085254

RESUMO

There is a growing demand for diagnostic procedures including in vivo tumor imaging. Radiometal-based imaging agents are advantageous for tumor imaging because radiometals (i) have a wide range of half-lives and (ii) are easily incorporated into imaging probes via a mild, rapid chelation event with a bifunctional chelator (BFC). Microfluidic platforms hold promise for synthesis of radiotracers because they can easily handle minute volumes, reduce consumption of expensive reagents, and minimize personnel exposure to radioactive compounds. Here we demonstrate the use of a "click chip" with an immobilized Cu(I) catalyst to facilitate the "click chemistry" conjugation of BFCs to biomolecules (BMs); a key step in the synthesis of radiometal-based imaging probes. The "click chip" was used to synthesize three different BM-BFC conjugates with minimal amounts of copper present in reaction solutions (∼20 ppm), which reduces or obviates the need for a copper removal step. These initial results are promising for future endeavors of synthesizing radiometal-based imaging agents completely on chip.


Assuntos
Alcinos/química , Azidas/química , Quelantes/química , Química Click/métodos , Cobre/química , Reação de Cicloadição/métodos , Compostos Radiofarmacêuticos/síntese química , Catálise , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Imagem Molecular , Compostos Radiofarmacêuticos/química
18.
Angew Chem Int Ed Engl ; 56(7): 1815-1819, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28079296

RESUMO

Supramolecular crystalline assembly constitutes a rational approach to bioengineer intracellular structures. Here, biocrystals of clofazimine (CFZ) that form in vivo within macrophages were measured to have marked curvature. Isolated crystals, however, showed reduced curvature suggesting that intracellular forces bend these drug crystals. Consistent with the ability of biocrystals to elastically deform, the inherent crystal structure of the principal molecular component of the biocrystals-the hydrochloride salt of CFZ (CFZ-HCl)-has a corrugated packing along the (001) face and weak dispersive bonding in multiple directions. These characteristics were previously found to be linked to the elasticity of other organic crystals. Internal stress in bent CFZ-HCl led to photoelastic effects on the azimuthal orientation of polarized light transmittance. We propose that elastic, intracellular crystals can serve as templates to construct functional microdevices with different applications.


Assuntos
Anti-Inflamatórios/metabolismo , Clofazimina/metabolismo , Macrófagos/metabolismo , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Clofazimina/administração & dosagem , Clofazimina/química , Cristalografia por Raios X , Elasticidade , Macrófagos/química , Camundongos , Modelos Moleculares
19.
J Am Chem Soc ; 139(1): 47-50, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27958727

RESUMO

Electrochemical conversion of CO2 holds promise for utilization of CO2 as a carbon feedstock and for storage of intermittent renewable energy. Presently Cu is the only metallic electrocatalyst known to reduce CO2 to appreciable amounts of hydrocarbons, but often a wide range of products such as CO, HCOO-, and H2 are formed as well. Better catalysts that exhibit high activity and especially high selectivity for specific products are needed. Here a range of bimetallic Cu-Pd catalysts with ordered, disordered, and phase-separated atomic arrangements (Cuat:Pdat = 1:1), as well as two additional disordered arrangements (Cu3Pd and CuPd3 with Cuat:Pdat = 3:1 and 1:3), are studied to determine key factors needed to achieve high selectivity for C1 or C2 chemicals in CO2 reduction. When compared with the disordered and phase-separated CuPd catalysts, the ordered CuPd catalyst exhibits the highest selectivity for C1 products (>80%). The phase-separated CuPd and Cu3Pd achieve higher selectivity (>60%) for C2 chemicals than CuPd3 and ordered CuPd, which suggests that the probability of dimerization of C1 intermediates is higher on surfaces with neighboring Cu atoms. Based on surface valence band spectra, geometric effects rather than electronic effects seem to be key in determining the selectivity of bimetallic Cu-Pd catalysts. These results imply that selectivities to different products can be tuned by geometric arrangements. This insight may benefit the design of catalytic surfaces that further improve activity and selectivity for CO2 reduction.

20.
ChemSusChem ; 10(6): 1094-1099, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-27791338

RESUMO

We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H2 (approximately 98 % CO and 2 % H2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm-2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO2 reduction as an approach to reduce atmospheric CO2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources.


Assuntos
Dióxido de Carbono/química , Monóxido de Carbono/química , Carbono/química , Condutividade Elétrica , Nanotubos de Carbono/química , Nitrogênio/química , Catálise , Eletroquímica , Eletrodos , Modelos Moleculares , Conformação Molecular , Nanocompostos/química , Nitrilas/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...