Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Int J Radiat Biol ; 99(6): 882-890, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34325613

RESUMO

PURPOSE: The purpose of the studies described in this mini review article was to identify nontoxic compounds that could prevent or suppress the radiation induced malignant transformation of cells and be useful as human cancer preventive agents. CONCLUSIONS: (1) Many different types of potential anticarcinogenic substances were evaluated initially for their abilities to prevent or suppress radiation induced malignant transformation in vitro, and certain anticarcinogenic protease inhibitors (APIs) were observed to be the most powerful anticarcinogenic agents at suppressing this surrogate endpoint biomarker of radiation carcinogenesis. (2) Within the category of APIs, those that inhibited the activity of chymotrypsin were effective at far lower molar concentrations than other APIs. The soybean-derived protease inhibitor known as the Bowman-Birk inhibitor (BBI) is a particularly powerful chymotrypsin inhibitor that is able to prevent radiation induced transformation in vitro (at concentrations down to nanomolar levels) as well as radiation induced carcinogenesis in vivo without toxicity. (3) There were many other unusual characteristics of APIs that led to the selection of one of these APIs, BBI, as the most appropriate compound for us to develop as a human cancer preventive agent. As one example, the APIs have an irreversible effect on carcinogenesis, while the effects are reversible for most anticarcinogenic agents when they are removed from carcinogenesis assay systems. (4) Numerous studies were performed in attempts to determine the potential mechanisms by which the APIs could prevent or suppress radiation induced carcinogenesis in in vitro and in vivo systems, and the results of these studies are described in this review article. The APIs and the proteases which interact with them appear to play important roles in radiation carcinogenesis. (5) Preparations for human trials using BBI began decades ago. The cost of preparing purified BBI was far too high to consider performing human trials with this agent, so BBI Concentrate (BBIC), a soybean extract enriched in BBI, was developed for the specific purpose of performing human trials with BBI. BBIC achieved Investigational New Drug (IND) Status with the Food and Drug Administration in April,1992, and human BBIC trials began at that time. (6) Several human trials were performed using BBIC and they indicated many potentially beneficial health effects produced by BBIC administration to people in various forms (e.g. tablets). 7) It is hypothesized that BBI takes the place of α-1-antichymotrypsin, an important regulatory compound in the human body, and helps to maintain homeostasis.


Assuntos
Anticarcinógenos , Inibidor da Tripsina de Soja de Bowman-Birk , Humanos , Inibidores de Proteases/farmacologia , Inibidor da Tripsina de Soja de Bowman-Birk/farmacologia , Anticarcinógenos/farmacologia , Peptídeo Hidrolases , Quimotripsina , Transformação Celular Neoplásica
2.
Int J Radiat Oncol Biol Phys ; 106(2): 440-448, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31928642

RESUMO

PURPOSE: Recent studies suggest that ultrahigh-dose-rate, "FLASH," electron radiation therapy (RT) decreases normal tissue damage while maintaining tumor response compared with conventional dose rate RT. Here, we describe a novel RT apparatus that delivers FLASH proton RT (PRT) using double scattered protons with computed tomography guidance and provide the first report of proton FLASH RT-mediated normal tissue radioprotection. METHODS AND MATERIALS: Absolute dose was measured at multiple depths in solid water and validated against an absolute integral charge measurement using a Faraday cup. Real-time dose rate was obtained using a NaI detector to measure prompt gamma rays. The effect of FLASH versus standard dose rate PRT on tumors and normal tissues was measured using pancreatic flank tumors (MH641905) derived from the KPC autochthonous PanCa model in syngeneic C57BL/6J mice with analysis of fibrosis and stem cell repopulation in small intestine after abdominal irradiation. RESULTS: The double scattering and collimation apparatus was dosimetrically validated with dose rates of 78 ± 9 Gy per second and 0.9 ± 0.08 Gy per second for the FLASH and standard PRT. Whole abdominal FLASH PRT at 15 Gy significantly reduced the loss of proliferating cells in intestinal crypts compared with standard PRT. Studies with local intestinal irradiation at 18 Gy revealed a reduction to near baseline levels of intestinal fibrosis for FLASH-PRT compared with standard PRT. Despite this difference, FLASH-PRT did not demonstrate tumor radioprotection in MH641905 pancreatic cancer flank tumors after 12 or 18 Gy irradiation. CONCLUSIONS: We have designed and dosimetrically validated a FLASH-PRT system with accurate control of beam flux on a millisecond time scale and online monitoring of the integral and dose delivery time structure. Using this system, we found that FLASH-PRT decreases acute cell loss and late fibrosis after whole-abdomen and focal intestinal RT, whereas tumor growth inhibition is preserved between the 2 modalities.


Assuntos
Órgãos em Risco/efeitos da radiação , Terapia com Prótons/instrumentação , Lesões Experimentais por Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Radioterapia Guiada por Imagem/instrumentação , Abdome/efeitos da radiação , Animais , Proliferação de Células/efeitos da radiação , Desenho de Equipamento/métodos , Estudos de Viabilidade , Feminino , Fibrose , Raios gama , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Tratamentos com Preservação do Órgão/instrumentação , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/patologia , Neoplasias Pancreáticas/radioterapia , Terapia com Prótons/métodos , Proteção Radiológica/métodos , Radiometria/métodos , Radioterapia Guiada por Imagem/métodos , Espalhamento de Radiação , Células-Tronco/efeitos da radiação , Tomografia Computadorizada por Raios X
3.
Radiat Res ; 193(1): 46-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675265

RESUMO

D-dimer plasma levels were evaluated to determine whether they are altered by radiation. D-dimer levels were measured in radiation oncology patients, who were diagnosed with prostate, breast or lung cancer, or leukemia, as well as in healthy subjects serving as controls. Blood samples from radiotherapy patients were taken at three different time points: pre-, on- and post-radiotherapy. For the patients, considered together, differences between the D-dimer levels at these three time points compared to controls were statistically significant. Compared to the pre-radiotherapy measurements, radiation exposure was associated with a significant increase in the D-dimer levels at the on- and post-radiotherapy time points. At the post-radiotherapy time point, D-dimer levels in the patients were not significantly reduced compared to the on-radiotherapy levels, indicating that the risk for developing disseminated intravascular coagulation (DIC) may be increased in some radiation oncology patients. Of particular concern are the post-radiotherapy results observed for the D-dimer levels in the leukemia patients, in which the average fold increase in the D-dimer levels was 5.43 (compared to the pre-radiotherapy levels). These results suggest that leukemia patients might benefit from frequent assessment of their D-dimer levels after their total-body irradiation-conditioning regimen to detect early signs of DIC development. It is hoped that the results described here will lead to heightened awareness in the radiation oncology community that the risk of DIC development is greatly increased in some of these patients.


Assuntos
Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Neoplasias/sangue , Humanos , Neoplasias/radioterapia , Radioterapia (Especialidade)
4.
PLoS One ; 14(2): e0207503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30742630

RESUMO

The cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge. We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5-200 cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes that showed a dose response. While fewer genes were dose-responsive to proton than gamma radiation (29 vs. 194 genes; q-value ≤ 0.1), the magnitude of the effect was greater. Highly responsive genes were enriched for radiation response pathways (DNA damage, apoptosis, cellular stress and inflammation; p-value ≤ 0.01). Gamma, but not proton radiation induced additionally genes in vasculature specific pathways. Genes responsive to both radiation types showed almost perfectly superimposable dose-response relationships. Despite the activation of canonical radiation response pathways by both radiation types, we detected marked differences in the genomic response of the murine aorta. Models of cardiovascular risk based on photon radiation may not accurately predict the risk associated with proton radiation.


Assuntos
Aorta/efeitos da radiação , Genoma/genética , Genoma/efeitos da radiação , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Raios gama , Genômica/métodos , Inflamação/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Projetos Piloto , Prótons , Radiação Ionizante
5.
NPJ Microgravity ; 4: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29644336

RESUMO

Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.

6.
Radiat Res ; 186(2): 121-40, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27459701

RESUMO

Results from our recent studies have led to the novel hypothesis that radiation-induced coagulopathy (RIC) and associated hemorrhage occurring as part of the acute radiation syndrome (ARS) is a major cause of death resulting from radiation exposure in large mammals, including humans. This article contains information related to RIC, as well as potential strategies for the prevention and treatment of RIC. In addition, new findings are reported here on the occurrence of RIC biomarkers in humans exposed to radiation. To determine whether irradiated humans have RIC biomarkers, blood samples were obtained from radiotherapy patients who received treatment for different types of malignancies. Blood samples from allogeneic hematopoietic cell transplantation (allo-HCT) patients obtained before, during and after irradiation indicated that exposure led to prolonged clot formation times, increased levels of thrombin-antithrombin III (TAT) complex and increased circulating nucleosome/histone (cNH) levels, which suggest potential coagulopathies in the allo-HCT patients. Since these allo-HCT patients received chemotherapy prior to radiotherapy, it is possible that the chemical agents could have influenced the observed results. Frozen plasma samples from radiotherapy patients with prostate, lung and breast cancer were also obtained for analyses of cNH levels. The results indicated that some of these patients had very high cNH blood levels. Analysis of cNH levels in plasma samples from irradiated ferrets also indicated increased cNH levels compared to preirradiation baseline levels. The results from irradiated animals and some radiotherapy patients suggest the possibility that anti-histone antibodies, which block the toxic effects of elevated cNH levels in the blood, might be useful as therapeutic agents for adverse biological radiation-induced effects. The detection of increased levels of cNH in some radiotherapy patient blood samples demonstrates its potential as a biomarker for diagnosing and/or predicting the propensity for developing coagulopathies/hemorrhage, offering possible treatment options with personalized medicine therapies for cancer patients.


Assuntos
Transtornos da Coagulação Sanguínea/prevenção & controle , Transtornos da Coagulação Sanguínea/terapia , Lesões por Radiação/prevenção & controle , Lesões por Radiação/terapia , Animais , Biomarcadores/sangue , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/patologia , Furões , Histonas/sangue , Humanos , Nucleossomos/metabolismo , Nucleossomos/efeitos da radiação , Lesões por Radiação/sangue , Lesões por Radiação/patologia
7.
Life Sci Space Res (Amst) ; 6: 21-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26256624

RESUMO

The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed.


Assuntos
Meio Ambiente Extraterreno , Prótons/efeitos adversos , Exposição à Radiação/efeitos adversos , Radiação Ionizante , Pele/lesões , Pele/efeitos da radiação , Animais , Astronautas , Relação Dose-Resposta à Radiação , Exposição Ambiental/efeitos adversos , Modelos Animais , Doses de Radiação , Pigmentação da Pele/efeitos da radiação , Atividade Solar , Sistema Solar , Suínos , Porco Miniatura , Irradiação Corporal Total/efeitos adversos
9.
Life Sci Space Res (Amst) ; 4: 6-10, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26072960

RESUMO

The left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model. Vasodilatory responses to adenosine diphosphate (ADP; 10(−9)­10(−4) M), bradykinin (BK; 10(−11)­10(−6) M), and sodium nitroprusside (SNP; 10(−10)­10(−4) M) were assessed. The LAD arteries from Control (non-irradiated) and the eSPE (irradiated) animals were isolated and exhibited a similar relaxation response following treatment with either ADP or SNP. In contrast, a significantly reduced relaxation response to BK treatment was observed in the eSPE irradiated group, compared to the control group. These data demonstrate that simulated SPE radiation exposure alters LAD function.


Assuntos
Difosfato de Adenosina/farmacologia , Bradicinina/farmacologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Vasos Coronários/efeitos da radiação , Coração/efeitos da radiação , Nitroprussiato/farmacologia , Vasodilatadores/farmacologia , Animais , Elétrons/efeitos adversos , Masculino , Suínos , Porco Miniatura
10.
Life Sci Space Res (Amst) ; 5: 13-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25909052

RESUMO

Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for loss of white blood cells (WBCs), which are the body's main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved WBC loss, specifically neutrophils, in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated, irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well as internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses.


Assuntos
Eritrócitos/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Neutrófilos/efeitos dos fármacos , Tromboelastografia/efeitos dos fármacos , Irradiação Corporal Total/efeitos adversos , Animais , Contagem de Eritrócitos , Filgrastim , Contagem de Leucócitos , Polietilenoglicóis , Prótons/efeitos adversos , Radiação Ionizante , Proteínas Recombinantes/farmacologia , Atividade Solar , Suínos , Porco Miniatura
11.
PLoS One ; 10(3): e0120126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793272

RESUMO

A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body's defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.


Assuntos
Antibacterianos/farmacologia , Infecções Bacterianas/prevenção & controle , Fator Estimulador de Colônias de Granulócitos/farmacologia , Atividade Solar , Voo Espacial , Animais , Enrofloxacina , Feminino , Fluoroquinolonas/farmacologia , Camundongos
12.
Life Sci Space Res (Amst) ; 4: 11-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25774341

RESUMO

During a major solar particle event (SPE), astronauts in space are at risk of exposure to an increased dose of proton radiation. The whole body distribution of the absorbed SPE proton dose is inhomogeneous, and such an inhomogeneous SPE proton dose can be simulated by electron radiation. Using Yucatan minipigs as an animal model, we compared the time courses of leukocyte count changes after exposure to proton simulated SPE (pSPE) radiation or electron simulated SPE (eSPE) radiation. The results demonstrated that the time required after irradiation to reach the lowest leukocyte counts was generally comparable between the pSPE and eSPE radiation exposures. However, the leukocyte count often recovered faster after electron irradiation compared to proton irradiation at the corresponding doses. In addition, the radiation dose required to achieve comparable magnitudes of leukocyte count decrease was higher in the eSPE animals than for the pSPE animals. In conclusion, based on the magnitude of the decrease and the time required to reach the lowest leukocyte counts after irradiation, the pSPE radiation was more effective than the eSPE radiation in reducing the peripheral leukocyte counts. Lymphocytes appeared to be the most sensitive type of leukocytes in response to either type of SPE radiation. It is particularly noteworthy that following exposure to pSPE radiation at the skin doses >5 Gy, the neutrophils do not recover from the radiation damage at times up to 30 days, and the neutrophils have not recovered to their baseline levels even at 90 days post-irradiation. These results suggest a marked difference in the ability of the neutrophils to recover from pSPE radiation compared with the results observed for eSPE radiation.


Assuntos
Elétrons/efeitos adversos , Leucócitos/efeitos da radiação , Neutrófilos/efeitos da radiação , Prótons/efeitos adversos , Atividade Solar , Animais , Relação Dose-Resposta à Radiação , Meio Ambiente Extraterreno , Contagem de Leucócitos , Modelos Animais , Doses de Radiação , Radiação Ionizante , Suínos , Porco Miniatura
13.
Exp Dermatol ; 24(2): 157-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25393687

RESUMO

Colorimetric staining techniques such as immunohistochemistry (IHC), immunofluorescence (IF) and histochemistry (HC) provide useful information regarding the localization and relative amount of a molecule/substance in skin. We have developed a novel, straightforward method to assess colorimetric staining by combining features from two open-source software programs. As a proof of principle, we demonstrate the utility of this approach by analysing changes in skin melanin deposition during the radiation-induced tanning response of Yucatan mini-pigs. This method includes a visualization step to validate the accuracy of colour selection before quantitation to ensure accuracy. The data show that this method is robust and will provide a means to obtain accurate comparative analyses of staining in IHC/IF/HC samples.


Assuntos
Colorimetria/métodos , Melaninas/química , Pele/metabolismo , Software , Animais , Biópsia , Epiderme/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Microscopia de Fluorescência , Suínos , Porco Miniatura
14.
J Womens Health (Larchmt) ; 23(11): 956-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25401940

RESUMO

This review is focused on sex and gender effects on immunological alterations occurring during space flight. Sex differences in immune function and the outcome of inflammatory, infectious, and autoimmune diseases are well documented. The work of the Immunology Workgroup identified numerous reasons why there could be sex and/or gender differences observed during and after spaceflight, but thus far, there has been very little investigation in this area of research. In most cases, this is due to either a low total number of subjects or the minimal number of female flight crew members available for these studies. Thus, the availability of a sufficient number of female subjects to enable statistical analysis of the data has been a limiting factor. As the inclusion of female crew members has increased in the recent past, such studies should be possible in the future. It is very difficult to obtain immunologic and infectious data in small animals that can be usefully extrapolated to humans undergoing spaceflight. Thus, it is recommended by the Immunology Workgroup that a greater emphasis be placed on studying astronauts themselves, with a focus on long-term evaluations of specific, known infectious risks.


Assuntos
Astronautas/estatística & dados numéricos , Doenças do Sistema Imunitário/etiologia , Voo Espacial , Estresse Fisiológico/imunologia , Ausência de Peso/efeitos adversos , Saúde da Mulher , Adaptação Fisiológica , Medicina Aeroespacial , Feminino , Nível de Saúde , Humanos , Masculino , Fatores Sexuais
15.
Gravit Space Res ; 2(1): 42-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25360441

RESUMO

Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.

16.
Int J Biomed Sci ; 10(3): 182-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25324699

RESUMO

Si-Wu-Tang (SWT) is a decoction consisting of a mixture of ingredients of Rehmanniae Radix, Angelica Radix, Chuanxiong Rhizoma and Paeoniae Radix. As a traditional Chinese herbal decoction, SWT has been widely used for the treatment of diseases characterized as blood and/or energy deficit. The present study was performed to evaluate the effects of SWT on the different populations of circulating white blood cells (WBCs) and gastrointestinal changes in γ-ray irradiated mice. Female mice were treated daily with orally administered SWT seven days before irradiation, until one day before irradiation or until one day before sample collection. WBC counts were determined from peripheral blood samples taken from the mice at different times post-irradiation. Hematoxylin and eosin (H&E) staining, as well as immunohistochemical analysis of fibrinogen, were utilized to evaluate the effects of SWT in the intestines of mice after radiation exposure. The results of the present studies demonstrate that SWT has protective effects against radiation damage to circulating WBCs, specifically to lymphocytes, and to the gastrointestinal tract of the irradiated animals.

17.
Life Sci Space Res (Amst) ; 1: 10-43, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25258703

RESUMO

As part of a program to assess the adverse biological effects expected from astronaut exposure to space radiation, numerous different biological effects relating to astronaut health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronaut vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

18.
Life Sci Space Res (Amst) ; 2: 86-91, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25202654

RESUMO

NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure.

19.
Gravit Space Res ; 2(1): 25-31, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25221782

RESUMO

Space travel beyond the Earth's protective magnetosphere risks exposing astronauts to ionizing radiation, such as that generated during a solar particle event (SPE). Ionizing radiation has well documented effects on blood cells and it is generally assumed that these effects contribute to the hematopoietic syndrome (HS), observed in animals and humans, following exposure to total body irradiation (TBI). The purpose of the current study was to assess the role of gender on the effects of gamma radiation on blood cells. C3H/HeN mice were irradiated with a 137Cs gamma source. Radiation had similar effects on white blood cells (WBCs), lymphocytes, and granulocytes in male and female C3H/HeN mice, while red blood cell (RBC) counts and hematocrit values remained stable following radiation exposure. Non-irradiated male mice had 13% higher platelet counts, compared with their female counterparts, and showed enhanced recovery of platelets on day 16 following radiation exposure. Hence, gender differences influence the response of platelets to TBI exposure.

20.
Oncol Lett ; 7(4): 1151-1158, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24944684

RESUMO

In previously performed animal studies and Phase I-II human trials, Bowman-Birk inhibitor concentrate (BBIC) appeared to be a promising cancer chemopreventive agent. The present study describes the results of two phase I randomized double-blind placebo-controlled trials performed in male subjects to assess the safety and toxicity of the original and new formulations of BBIC administered in a single dose as a suspension in orange juice. The dose of BBIC varied from 800-2,000 chymotrypsin inhibitor (CI) units. The BBI concentration in the serum samples collected from the subjects was analyzed by a dot-blot analysis procedure using the 5G2 monoclonal antibody, which is specific for reduced BBI. A total of 41 subjects were enrolled, 20 in the initial BBIC study and 21 in the second BBIC study. In these human trials, no clinically relevant changes in hematological or biochemical parameters were observed. Overall, BBIC was found to be well-tolerated. For these BBIC single-dose phase I trials, there was no dose-limiting toxicity for BBIC, even at the highest dose evaluated, and there were no apparent differences between the clinical trial results for the two formulations of BBIC. The bioavailability of BBI in the second clinical trial, which used the new BBIC formulation, was approximately 40 to 43% of the BBI bioavailability reached in the first clinical trial, which used the original BBIC formulation. The observed bioavailability difference was attributed to the different BBIC formulations used in these two clinical trials. These trials demonstrated that BBIC is safe when administered in a single dose of up to 2,000 CI units. Therefore, the results from the two trials indicate that a multi-dose trial of BBIC may be safely performed with doses of up to 2,000 CI units per day.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...