Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Lab Invest ; 100(3): 414-425, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31527829

RESUMO

Prostaglandin E2 receptor EP1 (PGE2/EP1) promotes diabetic renal injury, and EP1 receptor deletion improves hyperfiltration, albuminuria, and fibrosis. The role of EP1 receptors in hypertensive kidney disease (HKD) remains controversial. We examined the contribution of EP1 receptors to HKD. EP1 null (EP1-/-) mice were bred with hypertensive TTRhRen mice (Htn) to evaluate kidney function and injury at 24 weeks. EP1 deletion had no effect on elevation of systolic blood pressure in Htn mice (HtnEP1-/-) but resulted in pronounced albuminuria and reduced FITC-inulin clearance, compared with Htn or wild-type (WT) mice. Ultrastructural injury to podocytes and glomerular endothelium was prominent in HtnEP1-/- mice; including widened subendothelial space, subendothelial lucent zones and focal lifting of endothelium from basement membrane, with focal subendothelial cell debris. Cortex COX2 mRNA was increased by EP1 deletion. Glomerular EP3 mRNA was reduced by EP1 deletion, and EP4 by Htn and EP1 deletion. In WT mice, PGE2 increased chloride reabsorption via EP1 in isolated perfused thick ascending limb (TAL), but PGE2 or EP1 deletion did not affect vasopressin-mediated chloride reabsorption. In WT and Htn mouse inner medullary collecting duct (IMCD), PGE2 inhibited vasopressin-water transport, but not in EP1-/- or HtnEP1-/- mice. Overall, EP1 mediated TAL and IMCD transport in response to PGE2 is unaltered in Htn, and EP1 is protective in HKD.


Assuntos
Hipertensão Renal , Podócitos , Receptores de Prostaglandina E Subtipo EP1 , Animais , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Deleção de Genes , Taxa de Filtração Glomerular/genética , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Transgênicos , Podócitos/citologia , Podócitos/metabolismo , Podócitos/patologia , Receptores de Prostaglandina E Subtipo EP1/genética , Receptores de Prostaglandina E Subtipo EP1/metabolismo
3.
Am J Physiol Renal Physiol ; 299(6): F1348-58, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20630933

RESUMO

Molecular mechanisms underlying renal complications of diabetes remain unclear. We tested whether renal NADPH oxidase (Nox) 4 contributes to increased reactive oxygen species (ROS) generation and hyperactivation of redox-sensitive signaling pathways in diabetic nephropathy. Diabetic mice (db/db) (20 wk) and cultured mouse proximal tubule (MPT) cells exposed to high glucose (25 mmol/l, D-glucose) were studied. Expression (gene and protein) of Nox4, p22(phox), and p47(phox), but not Nox1 or Nox2, was increased in kidney cortex, but not medulla, from db/db vs. control mice (db/m) (P < 0.05). ROS generation, p38 mitogen-activated protein (MAP) kinase phosphorylation, and content of fibronectin and transforming growth factor (TGF)-ß1/2 were increased in db/db vs. db/m (P < 0.01). High glucose increased expression of Nox4, but not other Noxes vs. normal glucose (P < 0.05). This was associated with increased NADPH oxidase activation and enhanced ROS production. Nox4 downregulation by small-interfering RNA and inhibition of Nox4 activity by GK-136901 (Nox1/4 inhibitor) attenuated d-glucose-induced NADPH oxidase-derived ROS generation. High d-glucose, but not l-glucose, stimulated phosphorylation of p38MAP kinase and increased expression of TGF-ß1/2 and fibronectin, effects that were inhibited by SB-203580 (p38MAP kinase inhibitor). GK-136901 inhibited d-glucose-induced actions. Our data indicate that, in diabetic conditions: 1) renal Nox4 is upregulated in a cortex-specific manner, 2) MPT cells possess functionally active Nox4-based NADPH, 3) Nox4 is a major source of renal ROS, and 4) activation of profibrotic processes is mediated via Nox4-sensitive, p38MAP kinase-dependent pathways. These findings implicate Nox4-based NADPH oxidase in molecular mechanisms underlying fibrosis in type 2 diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , NADPH Oxidases/fisiologia , Animais , Células Cultivadas , Grupo dos Citocromos b/biossíntese , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Fibrose , Glucose/farmacologia , Masculino , Camundongos , NADPH Oxidase 4 , NADPH Oxidases/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Pirazóis/farmacologia , Piridonas/farmacologia , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-19625175

RESUMO

We have previously demonstrated that the EP1 subtype of PGE2 receptor is expressed in the differentiated compartment of normal human epidermis and is coupled to intracellular calcium mobilization. We therefore hypothesized that the EP1 receptor is coupled to keratinocyte differentiation. In in vitro studies, radioligand binding, RT-PCR, immunoblot and receptor agonist-induced second messenger studies demonstrate that the EP1 receptor is up-regulated by high cell density in human keratinocytes and this up-regulation precedes corneocyte formation. Moreover, two different EP1 receptor antagonists, SC51322 and AH6809, both inhibited corneocyte formation. SC51322 also inhibited the induction of differentiation-specific proteins, cytokeratin K10 and epidermal transglutaminase. We next examined the immunolocalization of the EP1 receptor in non-melanoma skin cancer in humans. Well-differentiated SCCs exhibited significantly greater membrane staining, while spindle cell carcinomas and BCCs had significantly decreased membrane staining compared with normal epidermis. This data supports a role for the EP1 receptor in regulating keratinocyte differentiation.


Assuntos
Diferenciação Celular , Queratinócitos/citologia , Queratinócitos/metabolismo , Receptores de Prostaglandina E/classificação , Receptores de Prostaglandina E/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Animais , Cálcio/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores de Prostaglandina E/antagonistas & inibidores , Receptores de Prostaglandina E/biossíntese , Receptores de Prostaglandina E Subtipo EP1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Xantonas/farmacologia
5.
Kidney Int ; 70(6): 1054-61, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16837921

RESUMO

Mutations in the ACTN4 gene, encoding the actin crosslinking protein alpha-actinin-4, are associated with a familial form of focal segmental glomerulosclerosis (FSGS). Mice with podocyte-specific expression of K256E alpha-actinin-4 develop foot process effacement and glomerulosclerosis, highlighting the importance of the cytoskeleton in podocyte structure and function. K256E alpha-actinin-4 exhibits increased affinity for F-actin. However, the downstream effects of this aberrant binding on podocyte dynamics remain unclear. Wild-type and K256E alpha-actinin-4 were expressed in cultured podocytes via adenoviral infection to determine the effect of the mutation on alpha-actinin-4 subcellular localization and on cytoskeletal-dependent processes such as adhesion, spreading, migration, and formation of foot process-like peripheral projections. Wild-type alpha-actinin-4 was detected primarily in the Triton-soluble fraction of podocyte lysates and localized to membrane-associated cortical actin and focal adhesions, with some expression along stress fibers. Conversely, K256E alpha-actinin-4 was detected predominantly in the Triton-insoluble fraction, was excluded from cortical actin, and localized almost exclusively along stress fibers. Both wild-type and K256E alpha-actinin-4-expressing podocytes adhered equally to an extracellular matrix (collagen-I). However, podocytes expressing K256E alpha-actinin-4 showed a reduced ability to spread and migrate on collagen-I. Lastly, K256E alpha-actinin-4 expression reduced the mean number of actin-rich peripheral projections. Our data suggest that aberrant sequestering of K256E alpha-actinin-4 impairs podocyte spreading, motility, and reduces the number of peripheral projections. Such intrinsic cytoskeletal derangements may underlie initial podocyte damage and foot process effacement encountered in ACTN4-associated FSGS.


Assuntos
Actinina/genética , Citoesqueleto/patologia , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/fisiopatologia , Podócitos/patologia , Actinina/metabolismo , Adenoviridae/genética , Animais , Adesão Celular/genética , Linhagem Celular Transformada , Movimento Celular/genética , Transformação Celular Viral , Modelos Animais de Doenças , Expressão Gênica , Glomerulosclerose Segmentar e Focal/patologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...