Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
J Agric Food Chem ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728580

RESUMO

When grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents. To address these challenges, we proposed an enzymatic hydrolysis method enabled by a tailored enzyme cocktail of novel glycosidases discovered through genome mining, and the generated VPs from VP glycosides can be quantitated by gas chromatography-mass spectrometry (GC-MS). The enzyme cocktails displayed high activities and a broad substrate scope when using commercially available VP glycosides as the substrates for testing. When evaluated in an industrially relevant matrix of Cabernet Sauvignon wine and grapes, this enzymatic cocktail consistently achieved a comparable efficacy of acid hydrolysis. The proposed method offers a simple, safe, and affordable option for smoke taint analysis.

2.
Blood Adv ; 8(5): 1281-1294, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38170760

RESUMO

ABSTRACT: Transformation of BCR::ABL1-negative myeloproliferative neoplasms (MPN) to an accelerated or blast phase is associated with poor outcomes. The efficacy of acute myeloid leukemia (AML)-type intensive and nonintensive hypomethylating agent-based regimens is not well studied. We therefore performed a retrospective analysis of patients with MPN-AP/BP (N = 138) treated with intensive (N = 81) and nonintensive (N = 57) blast-reduction strategies. We used clinically relatable response criteria developed at the Princess Margaret Cancer Centre. The overall best response, comprising complete remission (CR), complete remission with incomplete hematologic recovery (CRi), and reversion to chronic phase MPN (cMPN), in the intensive and nonintensive groups was 77% (62 of 81) and 39% (21 of 54), respectively. Similar overall best response rates were observed in patients receiving induction with daunorubicin combined with cytarabine arabinoside (daunorubicin + ara-C) (74% [23 of 31]) or FLAG-IDA/NOVE-HiDAC (78% [39 of 50], P = .78). However, patients receiving daunorubicin + ara-C more often required second inductions (29% [9 of 31] vs 4% [2 of 50], P = .002). Most responses in the entire cohort were reversions to cMPN (55 of 83 [66%]). CR and CRi comprised 30% (25 of 83) and 4% (3 of 83) of responses, respectively. Mutations in TP53 (overall response [OR] 8.2 [95% confidence interval [CI] 2.01, 37.1], P = .004) and RAS pathway (OR 5.1 [95%CI 1.2, 23.7], P = .03) were associated with inferior treatment response for intensively treated patients, and poorer performance status (Eastern Cooperative Oncology Group) was associated with inferior treatment response in both intensively (OR 10.4 [95% CI 2.0, 78.5], P = .009) and nonintensively treated groups (OR 12 [95% CI 2.04, 230.3], P = .02). In patients with paired samples before and after therapy (N = 26), there was a significant residual mutation burden remaining irrespective of response to blast-reduction therapy.


Assuntos
Transtornos Mieloproliferativos , Humanos , Resultado do Tratamento , Estudos Retrospectivos , Transtornos Mieloproliferativos/genética , Citarabina/uso terapêutico , Daunorrubicina
3.
J Hand Surg Eur Vol ; : 17531934231220251, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38069841

RESUMO

The ReMotion wrist replacement has good short- to medium-term survival with an acceptable complication profile as we previously reported in a cohort of patients with rheumatoid arthritis. We now report the long-term results of the same cohort and details of explant analysis of revisions undertaken for aseptic loosening. A total of 16 wrists were reviewed. Seven prostheses remain in situ with no obvious signs of wear or radiological loosening at a mean follow-up of 15.5 years. Three wrists had been revised: one for infection and two for aseptic loosening. Five patients (six wrists) died 2-9 years after operation from unrelated causes. Explant analysis demonstrated relatively minor wear compared with the published results of the Universal-2 prosthesis. We hypothesize that this may be explained by differences in polyethylene sterilization and prosthetic design. The ReMotion wrist replacement has favourable long-term results in patients with rheumatoid arthritis with a 16-year survival rate of 78%-86%.Level of evidence: IV.

5.
Leukemia ; 37(4): 751-764, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36720973

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous, aggressive malignancy with dismal prognosis and with limited availability of targeted therapies. Epigenetic deregulation contributes to AML pathogenesis. KDM6 proteins are histone-3-lysine-27-demethylases that play context-dependent roles in AML. We inform that KDM6-demethylase function critically regulates DNA-damage-repair-(DDR) gene expression in AML. Mechanistically, KDM6 expression is regulated by genotoxic stress, with deficiency of KDM6A-(UTX) and KDM6B-(JMJD3) impairing DDR transcriptional activation and compromising repair potential. Acquired KDM6A loss-of-function mutations are implicated in chemoresistance, although a significant percentage of relapsed-AML has upregulated KDM6A. Olaparib treatment reduced engraftment of KDM6A-mutant-AML-patient-derived xenografts, highlighting synthetic lethality using Poly-(ADP-ribose)-polymerase-(PARP)-inhibition. Crucially, a higher KDM6A expression is correlated with venetoclax tolerance. Loss of KDM6A increased mitochondrial activity, BCL2 expression, and sensitized AML cells to venetoclax. Additionally, BCL2A1 associates with venetoclax resistance, and KDM6A loss was accompanied with a downregulated BCL2A1. Corroborating these results, dual targeting of PARP and BCL2 was superior to PARP or BCL2 inhibitor monotherapy in inducing AML apoptosis, and primary AML cells carrying KDM6A-domain mutations were even more sensitive to the combination. Together, our study illustrates a mechanistic rationale in support of a novel combination therapy for AML based on subtype-heterogeneity, and establishes KDM6A as a molecular regulator for determining therapeutic efficacy.


Assuntos
Leucemia Mieloide Aguda , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética
6.
bioRxiv ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38234771

RESUMO

Initial classification of acute leukemia involves the assignment of blasts to cell states within the hematopoietic hierarchy based on morphological and immunophenotypic features. Yet, these traditional classification approaches lack precision, especially at the level of immature blasts. Single-cell RNA-sequencing (scRNA-seq) enables precise determination of cell state using thousands of markers, thus providing an opportunity to re-examine present-day classification schemes of acute leukemia. Here, we developed a detailed reference map of human bone marrow hematopoiesis from 263,519 single-cell transcriptomes spanning 55 cellular states. Cell state annotations were benchmarked against purified cell populations, and in-depth characterization of gene expression programs underlying hematopoietic differentiation was undertaken. Projection of single-cell transcriptomes from 175 samples spanning acute myeloid leukemia (AML), mixed phenotype acute leukemia (MPAL), and acute erythroid leukemia (AEL) revealed 11 subtypes involving distinct stages of hematopoietic differentiation. These included AML subtypes with notable lymphoid or erythroid lineage priming, challenging traditional diagnostic boundaries between AML, MPAL, and AEL. Quantification of lineage priming in bulk patient cohorts revealed specific genetic alterations associated with this unconventional lineage priming. Integration of transcriptional and genetic information at the single-cell level revealed how genetic subclones can induce lineage restriction, differentiation blocks, or expansion of mature myeloid cells. Furthermore, we demonstrate that distinct cellular hierarchies can co-exist within individual patients, providing insight into AML evolution in response to varying selection pressures. Together, precise mapping of hematopoietic cell states can serve as a foundation for refining disease classification in acute leukemia and understanding response or resistance to emerging therapies.

7.
Nat Med ; 28(6): 1212-1223, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618837

RESUMO

The treatment landscape of acute myeloid leukemia (AML) is evolving, with promising therapies entering clinical translation, yet patient responses remain heterogeneous, and biomarkers for tailoring treatment are lacking. To understand how disease heterogeneity links with therapy response, we determined the leukemia cell hierarchy makeup from bulk transcriptomes of more than 1,000 patients through deconvolution using single-cell reference profiles of leukemia stem, progenitor and mature cell types. Leukemia hierarchy composition was associated with functional, genomic and clinical properties and converged into four overall classes, spanning Primitive, Mature, GMP and Intermediate. Critically, variation in hierarchy composition along the Primitive versus GMP or Primitive versus Mature axes were associated with response to chemotherapy or drug sensitivity profiles of targeted therapies, respectively. A seven-gene biomarker derived from the Primitive versus Mature axis was associated with response to 105 investigational drugs. Cellular hierarchy composition constitutes a novel framework for understanding disease biology and advancing precision medicine in AML.


Assuntos
Leucemia Mieloide Aguda , Biomarcadores , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo
8.
Blood ; 140(16): 1753-1763, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-35512188

RESUMO

There is a growing body of evidence that therapy-related myeloid neoplasms (t-MNs) with driver gene mutations arise in the background of clonal hematopoiesis (CH) under the positive selective pressure of chemo- and radiation therapies. Uncovering the exposure relationships that provide selective advantage to specific CH mutations is critical to understanding the pathogenesis and etiology of t-MNs. In a systematic analysis of 416 patients with t-MN and detailed prior exposure history, we found that TP53 mutations were significantly associated with prior treatment with thalidomide analogs, specifically lenalidomide. We demonstrated experimentally that lenalidomide treatment provides a selective advantage to Trp53-mutant hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, the effect of which was specific to Trp53-mutant HSPCs and was not observed in HSPCs with other CH mutations. Because of the differences in CK1α degradation, pomalidomide treatment did not provide an equivalent level of selective advantage to Trp53-mutant HSPCs, providing a biological rationale for its use in patients at high risk for t-MN. These findings highlight the role of lenalidomide treatment in promoting TP53-mutated t-MNs and offer a potential alternative strategy to mitigate the risk of t-MN development.


Assuntos
Segunda Neoplasia Primária , Talidomida , Humanos , Lenalidomida/farmacologia , Talidomida/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Genes p53 , Mutação , Segunda Neoplasia Primária/etiologia , Segunda Neoplasia Primária/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Cell Rep ; 38(10): 110481, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263585

RESUMO

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
11.
Sci Rep ; 12(1): 3838, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264734

RESUMO

In cool-climate viticulture, the short growing season can influence grape seed maturation by reducing the apparent oxidation of flavan-3-ol monomers and associated increase in seed browning. A reduction in seed maturation increases the potential extraction of flavan-3-ol monomers into wine during maceration operations, heightening bitterness. Here, we carried out a 2 × 2 factorial experiment to test the ability of freezing and heating treatments to advance maturation (decrease flavan-3-ol, improve browning) of (Vitis vinifera L.) Pinot noir and Cabernet Sauvignon seeds over a 24-h incubation period. Only freezing significantly increased seed browning in both cultivars. Subsequent correlations with seed flavan-3-ol monomer concentrations suggest that freezing enhanced the oxidation of these compounds. Interestingly, natural ripening and freezing reduced galloylated flavan-3-ol monomers to a greater extent than non-galloylated ones. This study provides new information regarding the susceptibility of flavan-3-ol monomers to freezing and heating, and also suggests that freezing can advance the maturation the seeds of under-ripe red vinifera grapes.


Assuntos
Vitis , Vinho , Flavonoides , Congelamento , Frutas , Calefação , Sementes , Vinho/análise
12.
Blood Cancer Discov ; 3(1): 16-31, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019858

RESUMO

Central nervous system (CNS) dissemination of B-precursor acute lymphoblastic leukemia (B-ALL) has poor prognosis and remains a therapeutic challenge. Here we performed targeted DNA sequencing as well as transcriptional and proteomic profiling of paired leukemia-infiltrating cells in the bone marrow (BM) and CNS of xenografts. Genes governing mRNA translation were upregulated in CNS leukemia, and subclonal genetic profiling confirmed this in both BM-concordant and BM-discordant CNS mutational populations. CNS leukemia cells were exquisitely sensitive to the translation inhibitor omacetaxine mepesuccinate, which reduced xenograft leptomeningeal disease burden. Proteomics demonstrated greater abundance of secreted proteins in CNS-infiltrating cells, including complement component 3 (C3), and drug targeting of C3 influenced CNS disease in xenografts. CNS-infiltrating cells also exhibited selection for stemness traits and metabolic reprogramming. Overall, our study identifies targeting of mRNA translation as a potential therapeutic approach for B-ALL leptomeningeal disease. SIGNIFICANCE: Cancer metastases are often driven by distinct subclones with unique biological properties. Here we show that in B-ALL CNS disease, the leptomeningeal environment selects for cells with unique functional dependencies. Pharmacologic inhibition of mRNA translation signaling treats CNS disease and offers a new therapeutic approach for this condition.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Doenças do Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central , Neoplasias Meníngeas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Humanos , Neoplasias Meníngeas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Biossíntese de Proteínas/genética , Proteômica
13.
Plants (Basel) ; 10(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34579398

RESUMO

Grapevine productivity, and berry and wine flavonoid concentration, depend on the interactions of cultivar, environment, and applied cultural practices. We characterized the effects that mechanical leaf removal and irrigation treatments had on the flavonoid concentration of 'Merlot' (Vitis vinifera, L.) grape berries and wines in a hot climate over two growing seasons with contrasting precipitation patterns. Leaves were removed by machine, either at prebloom (PBLR), or at post-fruit-set (PFLR), or not removed (control) and irrigation was either applied as sustained deficit irrigation (SDI) at 0.8 of crop evapotranspiration (ETc) from budbreak to fruit set, or regulated deficit irrigation (RDI) at 0.8 ETc from bud break to fruit set, 0.5 ETc from fruit set to veraison, and 0.8 ETc from veraison to harvest, of ETc In 2014, PFLR reduced the leaf area index (LAI) compared to control. The RDI decreased season-long leaf water potential (ΨInt) compared to SDI. However, in 2015, none of the treatments affected LAI or ΨInt. In 2014, berry flavonoid concentrations were reduced by PBLR as well as SDI. SDI increased the flavonoid concentrations in wine, and PFLR increased some wine flavonols in one season. No factor affected the concentrations of wine proanthocyanidins or mean degree of polymerization. Thus, mechanical PFLR and RDI may increase berry flavonoid accumulation without yield reduction, in red wine grapes cultivars grown in hot climates when precipitation after bud break is lacking. However, spring precipitation may influence the effectiveness of these practices as evidenced by this work in a changing climate.

14.
Br J Haematol ; 194(3): 557-567, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34131896

RESUMO

There is limited understanding of the impact of frailty on clinical outcomes in patients with myelofibrosis (MF). In this retrospective cohort study on 439 chronic phase MF patients [mean age: 68·7 ± 12 years; median follow-up: 3·4 years (IQR 0·4-8·6)] from 2004 till 2018, we used a 35-variable frailty index (FI) to categorise patient's frailty status as fit (FI < 0·2, reference), prefrail (FI 0·2-0·29) or frail (FI ≥ 0·3). The association of frailty with overall survival (OS) and cumulative JAK inhibitor (JAKi) therapy failure was measured using hazard ratio (HR, 95% CI). In multivariable analysis, prefrail (HR 1·7, 1·1-2·5) and frail patients (HR 2·9, 1·6-5·5), those with higher DIPSS score (HR 2·5, 1·6-3·9) and transfusion dependency (HR 1·9, 1·3-2·9) had shorter OS. In a subset analysis of patients on JAKi treatment (n = 222), frail patients (HR 2·5, 1·1-5·7), patients with higher DIPSS score (HR 1·7, 1·0-3·1) and transfusion dependence (HR 1·7, 1·1-2·7) had higher cumulative incidence of JAKi failure. Age, comorbidities, ECOG performance status, and MPN driver mutations did not impact outcomes. Thus, higher frailty scores are associated with worse OS and increased JAKi failure in MF, and is a superior indicator of fitness in comparison to age, comorbidities, and performance status.


Assuntos
Fragilidade/complicações , Mielofibrose Primária/complicações , Mielofibrose Primária/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Idoso Fragilizado , Humanos , Pessoa de Meia-Idade , Mielofibrose Primária/epidemiologia , Estudos Retrospectivos , Análise de Sobrevida , Resultado do Tratamento
15.
J Agric Food Chem ; 69(27): 7687-7697, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34180657

RESUMO

Condensed tannin extraction and stable color formation are two of the cornerstones of red wine production. Without condensed tannin, red wine would lack the tactile feeling of astringency, and without the formation of modified pigments, it would lack color stability for long-term aging. To understand how malvidin-3,5-diglucoside interacts with condensed tannin under nonoxidative conditions, an experiment was designed conducting model-wine skin extractions of Sauvignon blanc grapes harvested at various dates of maturity. Monomeric malvidin-3,5-diglucoside was isolated from color concentrate and added during these extractions. Following a 72 h extraction, solutions were evaluated for recovery of monomeric anthocyanins, skin tannin concentration, skin tannin extractability, and impact of anthocyanins on condensed tannin size. Anthocyanins showed a significant impact on the extraction of flavan-3-ol material in the early stages of ripening that declined in the latter stages of ripening. Furthermore, anthocyanins significantly decreased the size of the condensed tannin extracted. These results suggest that anthocyanins are not only enhancing the extractability of condensed tannin but also readily incorporating into the polymeric material, leading to a decrease in the average molecular mass of the condensed tannin polymer. The extent of reaction in 72 h suggests that the rate of interflavan bond cleavage may be higher than previously reported and merits closer scrutiny.


Assuntos
Vitis , Vinho , Antocianinas/análise , Cor , Frutas/química , Peso Molecular , Taninos/análise , Vinho/análise
16.
Blood Cancer Discov ; 2(1): 32-53, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33458693

RESUMO

Acute myeloid leukemia (AML) is a caricature of normal hematopoiesis, driven from leukemia stem cells (LSC) that share some hematopoietic stem cell (HSC) programs including responsiveness to inflammatory signaling. Although inflammation dysregulates mature myeloid cells and influences stemness programs and lineage determination in HSC by activating stress myelopoiesis, such roles in LSC are poorly understood. Here, we show that S1PR3, a receptor for the bioactive lipid sphingosine-1-phosphate, is a central regulator which drives myeloid differentiation and activates inflammatory programs in both HSC and LSC. S1PR3-mediated inflammatory signatures varied in a continuum from primitive to mature myeloid states across AML patient cohorts, each with distinct phenotypic and clinical properties. S1PR3 was high in LSC and blasts of mature myeloid samples with linkages to chemosensitivity, while S1PR3 activation in primitive samples promoted LSC differentiation leading to eradication. Our studies open new avenues for therapeutic target identification specific for each AML subset.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Receptores de Esfingosina-1-Fosfato , Diferenciação Celular , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato/metabolismo
17.
Blood ; 137(12): 1628-1640, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33512458

RESUMO

Acute erythroid leukemia (AEL) is characterized by a distinct morphology, mutational spectrum, lack of preclinical models, and poor prognosis. Here, using multiplexed genome editing of mouse hematopoietic stem and progenitor cells and transplant assays, we developed preclinical models of AEL and non-erythroid acute leukemia and describe the central role of mutational cooperativity in determining leukemia lineage. Different combination of mutations in Trp53, Bcor, Dnmt3a, Rb1, and Nfix resulted in the development of leukemia with an erythroid phenotype, accompanied by the acquisition of alterations in signaling and transcription factor genes that recapitulate human AEL by cross-species genomic analysis. Clonal expansion during tumor evolution was driven by mutational cooccurrence, with clones harboring a higher number of founder and secondary lesions (eg, mutations in signaling genes) showing greater evolutionary fitness. Mouse and human AEL exhibited deregulation of genes regulating erythroid development, notably Gata1, Klf1, and Nfe2, driven by the interaction of mutations of the epigenetic modifiers Dnmt3a and Tet2 that perturbed methylation and thus expression of lineage-specific transcription factors. The established mouse leukemias were used as a platform for drug screening. Drug sensitivity was associated with the leukemia genotype, with the poly (ADP-ribose) polymerase inhibitor talazoparib and the demethylating agent decitabine efficacious in Trp53/Bcor-mutant AEL, CDK7/9 inhibitors in Trp53/Bcor/Dnmt3a-mutant AEL, and gemcitabine and bromodomain inhibitors in NUP98-KDM5A leukemia. In conclusion, combinatorial genome editing has shown the interplay of founding and secondary genetic alterations in phenotype and clonal evolution, epigenetic regulation of lineage-specific transcription factors, and therapeutic tractability in erythroid leukemogenesis.


Assuntos
Edição de Genes , Leucemia Eritroblástica Aguda/genética , Animais , Sistemas CRISPR-Cas , Evolução Clonal , Epigênese Genética , Hematopoese , Humanos , Camundongos , Mutação , Transcriptoma
19.
Knee Surg Sports Traumatol Arthrosc ; 29(10): 3229-3245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32613336

RESUMO

PURPOSE: The aim of this study was to report and compare the long-term revision rate, revision indications and patient reported outcome measures of cemented and cementless unicompartmental knee replacements (UKR). METHODS: Databases Medline, Embase and Cochrane Central of Controlled Trials were searched to identify all UKR studies reporting the ≥ 10 year clinical outcomes. Revision rates per 100 component years [% per annum (% pa)] were calculated by fixation type and then, subgroup analyses for fixed and mobile bearing UKRs were performed. Mechanisms of failure and patient reported outcome measures are reported. RESULTS: 25 studies were eligible for inclusion with a total of 10,736 UKRs, in which there were 8790 cemented and 1946 cementless knee replacements. The revision rate was 0.73% pa (CI 0.66-0.80) and 0.45% pa (CI 0.34-0.58) per 100 component years, respectively, with the cementless having a significantly (p < 0.001) lower overall revision rate. Therefore, based on these studies, the expected 10-year survival of cementless UKR would be 95.5% and cemented 92.7%. Subgroup analysis revealed this difference remained significant for the Oxford UKR (0.37% pa vs 0.77% pa, p < 0.001), but for non-Oxford UKRs there were no significant differences in revision rates of cemented and cementless UKRs (0.57% pa vs 0.69% pa, p = 0.41). Mobile bearing UKRs had significantly lower revision rates than fixed bearing UKRs in cementless (p = 0.001), but not cemented groups (p = 0.13). Overall the revision rates for aseptic loosening and disease progression were significantly lower (p = 0.02 and p = 0.009 respectively) in the cementless group compared to the cemented group (0.06 vs 0.13% pa and 0.10 vs 0.21% pa respectively). CONCLUSIONS: Cementless fixation had reduced long-term revision rates compared to cemented for the Oxford UKR. For the non-Oxford UKRs, the revision rates of cementless and cemented fixation types were equivalent. Therefore, cementless UKRs offer at least equivalent if not lower revision rates compared to cemented UKRs. LEVEL OF EVIDENCE: III.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/cirurgia , Desenho de Prótese , Falha de Prótese , Sistema de Registros , Reoperação , Resultado do Tratamento
20.
Blood Adv ; 4(21): 5402-5413, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33147339

RESUMO

The leukemia stem cell (LSC) populations of acute myeloid leukemia (AML) exhibit phenotypic, genetic, and functional heterogeneity that contribute to therapy failure and relapse. Progress toward understanding the mechanistic basis for therapy resistance in LSCs has been hampered by difficulties in isolating cell fractions that enrich for the entire heterogeneous population of LSCs within individual AML samples. We previously reported that CD200 gene expression is upregulated in LSC-containing AML fractions. Here, we show that CD200 is present on a greater proportion of CD45dim blasts compared with more differentiated CD45high cells in AML patient samples. In 75% (49 of 65) of AML cases we examined, CD200 was expressed on ≥10% of CD45dim blasts; of these, CD200 identified LSCs within the blast population in 9 of 10 (90%) samples tested in xenotransplantation assays. CD200+ LSCs could be isolated from CD200+ normal HSCs with the use of additional markers. Notably, CD200 expression captured both CD34- and CD34+ LSCs within individual AML samples. Analysis of highly purified CD200+ LSC-containing fractions from NPM1-mutated AMLs, which are commonly CD34-, exhibited an enrichment of primitive gene expression signatures compared with unfractionated cells. Overall, our findings support CD200 as a novel LSC marker that is able to capture the entire LSC compartment from AML patient samples, including those with NPM1 mutation.


Assuntos
Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Biomarcadores , Diferenciação Celular , Humanos , Leucemia Mieloide Aguda/genética , Nucleofosmina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...