Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38187527

RESUMO

Advancements in microscopy techniques and computing technologies have enabled researchers to digitally reconstruct brains at micron scale. As a result, community efforts like the BRAIN Initiative Cell Census Network (BICCN) have generated thousands of whole-brain imaging datasets to trace neuronal circuitry and comprehensively map cell types. This data holds valuable information that extends beyond initial analyses, opening avenues for variation studies and robust classification of cell types in specific brain regions. However, the size and heterogeneity of these imaging data have historically made storage, sharing, and analysis difficult for individual investigators and impractical on a broad community scale. Here, we introduce the Brain Image Library (BIL), a public resource serving the neuroscience community that provides a persistent centralized repository for brain microscopy data. BIL currently holds thousands of brain datasets and provides an integrated analysis ecosystem, allowing for exploration, visualization, and data access without the need to download, thus encouraging scientific discovery and data reuse.

2.
Evol Lett ; 6(2): 162-177, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35386836

RESUMO

Closely related populations often differ in resistance to a given parasite, as measured by infection success or failure. Yet, the immunological mechanisms of these evolved differences are rarely specified. Does resistance evolve via changes to the host's ability to recognize that an infection exists, actuate an effective immune response, or attenuate that response? We tested whether each of these phases of the host response contributed to threespine sticklebacks' recently evolved resistance to their tapeworm Schistocephalus solidus. Although marine stickleback and some susceptible lake fish permit fast-growing tapeworms, other lake populations are resistant and suppress tapeworm growth via a fibrosis response. We subjected lab-raised fish from three populations (susceptible marine "ancestors," a susceptible lake population, and a resistant lake population) to a novel immune challenge using an injection of (1) a saline control, (2) alum, a generalized pro-inflammatory adjuvant that causes fibrosis, (3) a tapeworm protein extract, or (4) a combination of alum and tapeworm protein. With enough time, all three populations generated a robust fibrosis response to the alum treatments. Yet, only the resistant population exhibited a fibrosis response to the tapeworm protein alone. Thus, these populations differed in their ability to respond to the tapeworm protein but shared an intact fibrosis pathway. The resistant population also initiated fibrosis faster in response to alum, and was able to attenuate fibrosis, unlike the susceptible populations' slow but longer lasting response to alum. As fibrosis has pathological side effects that reduce fecundity, the faster recovery by the resistant population may reflect an adaptation to mitigate the costs of immunity. Broadly, our results confirm that parasite detection and immune initiation, activation speed, and immune attenuation simultaneously contribute to the evolution of parasite resistance and adaptations to infection in natural populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...