Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1864(10): 183997, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718208

RESUMO

Hybrid membranes built from phospholipids and amphiphilic block copolymers seek to capitalize on the benefits of both constituents for constructing biomimetic interfaces with improved performance. However, hybrid membranes have not been formed or studied using the droplet interface bilayer (DIB) method, an approach that offers advantages for revealing nanoscale changes in membrane structure and mechanics and offers a path toward assembling higher-order tissues. We report on hybrid droplet interface bilayers (hDIBs) formed in hexadecane from binary mixtures of synthetic diphytanoyl phosphatidylcholine (DPhPC) lipids and low molecular weight 1,2 polybutadiene-b-polyethylene oxide (PBPEO) amphiphilic block copolymers and use electrophysiology measurements and imaging to assess the effects of PBPEO in the membrane. This work reveals that hDIBs containing up to 15 mol% PBPEO plus DPhPC are homogeneously mixtures of lipids and polymers, remain highly resistive to ion transport, and are stable-including under applied voltage. Moreover, they exhibit hydrophobic thicknesses similar to DPhPC-only bilayers, but also have significantly lower values of membrane tension. These characteristics coincide with reduced energy of adhesion between droplets and the formation of alamethicin ion channels at significantly lower threshold voltages, demonstrating that even moderate amounts of amphiphilic block copolymers in a lipid bilayer provide a route for tuning the physical properties of a biomimetic membrane.


Assuntos
Fosfatidilcolinas , Fosfolipídeos , Alameticina , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfolipídeos/química
2.
Symmetry (Basel) ; 13(8)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35498375

RESUMO

It is well known that the lipid distribution in the bilayer leaflets of mammalian plasma membranes (PMs) is not symmetric. Despite this, model membrane studies have largely relied on chemically symmetric model membranes for the study of lipid-lipid and lipid-protein interactions. This is primarily due to the difficulty in preparing stable, asymmetric model membranes that are amenable to biophysical studies. However, in the last 20 years, efforts have been made in producing more biologically faithful model membranes. Here, we review several recently developed experimental and computational techniques for the robust generation of asymmetric model membranes and highlight a new and particularly promising technique to study membrane asymmetry.

3.
Chem Phys Lipids ; 233: 104982, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33065119

RESUMO

Förster resonance energy transfer (FRET) is a powerful tool for investigating heterogeneity in lipid bilayers. In model membrane studies, samples are frequently unilamellar vesicles with diameters of 20-200 nm. It is well-known that FRET efficiency is insensitive to vesicle curvature in uniformly mixed lipid bilayers, and consequently theoretical models for FRET typically assume a planar geometry. Here, we use a spherical harmonic expansion of the acceptor surface density to derive an analytical solution for FRET between donor and acceptor molecules distributed on the surface of a sphere. We find excellent agreement between FRET predicted from the model and FRET calculated from corresponding Monte Carlo simulations, thus validating the model. An extension of the model to the case of a non-uniform acceptor surface density (i.e., a phase-separated vesicle) reveals that FRET efficiency depends on vesicle size when acceptors partition between the coexisting phases, and approaches the efficiency of a uniformly mixed bilayer as the vesicle size decreases. We show that this is an indirect effect of constrained domain size, rather than an intrinsic effect of vesicle curvature. Surprisingly, the theoretical predictions were not borne out in experiments: we did not observe a statistically significant change in FRET efficiency in phase-separated vesicles as a function of vesicle size. We discuss factors that likely mask the vesicle size effect in extruded samples.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Lipossomas Unilamelares/química , Método de Monte Carlo , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA