Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 7447, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366864

RESUMO

Skyrmions can be stabilized in magnetic systems with broken inversion symmetry and chiral interactions, such as Dzyaloshinskii-Moriya interactions (DMI). Further, compensation of magnetic moments in ferrimagnetic materials can significantly reduce magnetic dipolar interactions, which tend to favor large skyrmions. Tuning DMI is essential to control skyrmion properties, with symmetry breaking at interfaces offering the greatest flexibility. However, in contrast to the ferromagnet case, few studies have investigated interfacial DMI in ferrimagnets. Here we present a systematic study of DMI in ferrimagnetic CoGd films by Brillouin light scattering. We demonstrate the ability to control DMI by the CoGd cap layer composition, the stack symmetry and the ferrimagnetic layer thickness. The DMI thickness dependence confirms its interfacial nature. In addition, magnetic force microscopy reveals the ability to tune DMI in a range that stabilizes sub-100 nm skyrmions at room temperature in zero field. Our work opens new paths for controlling interfacial DMI in ferrimagnets to nucleate and manipulate skyrmions.

2.
Sci Rep ; 9(1): 803, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692580

RESUMO

We present a study of precessional magnetization switching in orthogonal spin-torque spin-valve devices at low temperatures. The samples consist of a spin-polarizing layer that is magnetized out-of-the film plane and an in-plane magnetized free and reference magnetic layer separated by non-magnetic metallic layers. We find coherent oscillations in the switching probability, characterized by high speed switching (~200 ps), error rates as low as 10-5 and decoherence effects at longer timescales (~1 ns). Our study, which is conducted over a wide range of parameter space (pulse amplitude and duration) with deep statistics, demonstrates that the switching dynamics are likely dominated by the action of the out-of-plane spin polarization, in contrast to in-plane spin-torque from the reference layer, as has been the case in most previous studies. Our results demonstrate that precessional spin-torque devices are well suited to a cryogenic environment, while at room temperature they have so far not exhibited coherent or reliable switching.

3.
Phys Rev E ; 93(1): 012114, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26871031

RESUMO

We present a general geometrical approach to the problem of escape from a metastable state in the presence of noise. The accompanying analysis leads to a simple condition, based on the norm of the drift field, for determining whether caustic singularities alter the escape trajectories when detailed balance is absent. We apply our methods to systems lacking detailed balance, including a nanomagnet with a biaxial magnetic anisotropy and subject to a spin-transfer torque. The approach described within allows determination of the regions of experimental parameter space that admit caustics.

4.
Clin Exp Dermatol ; 41(6): 610-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26648589

RESUMO

BACKGROUND: Leishmania (Viannia) guyanensis is believed to be the principal cause of cutaneous leishmaniasis (CL) in Suriname. This disease is treated with pentamidine isethionate (PI), but treatment failure has increasingly been reported. AIM: To evaluate PI for its clinical efficacy, to compare parasite load, and to assess the possibility of treatment failure due to other infecting Leishmania species. METHODS: Parasite load of patients with CL was determined in skin biopsies using real-time quantitative PCR before treatment and 6 and 12 weeks after treatment. Clinical responses were evaluated at week 12 and compared with parasite load. In parallel, molecular species differentiation was performed. RESULTS: L. (V.) guyanensis was the main infecting species in 129 of 143 patients (about 90%). PI treatment led to a significant decrease (P < 0.001) in parasite counts, and cured about 75% of these patients. Treatment failure was attributable to infections with Leishmania (Viannia) braziliensis, Leishmania (Leishmania) amazonensis and L. (V.) guyanensis (1/92, 1/92 and 22/92 evaluable cases, respectively). There was substantial agreement beyond chance between the parasite load at week 6 and the clinical outcome at week 12, as indicated by the κ value of 0.61. CONCLUSIONS: L. (V.) guyanensis is the main infecting species of CL in Suriname, followed by L. (V.) braziliensis and L. (L.) amazonensis. Furthermore, patient response to PI can be better anticipated based on the parasite load 6 weeks after the treatment rather than on parasite load before treatment.


Assuntos
Leishmania/isolamento & purificação , Leishmaniose Cutânea/tratamento farmacológico , Pentamidina/farmacologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Pele/parasitologia , Adolescente , Adulto , Idoso , Antiprotozoários/uso terapêutico , Feminino , Humanos , Injeções Intramusculares , Leishmania/efeitos dos fármacos , Leishmania/crescimento & desenvolvimento , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania braziliensis/isolamento & purificação , Leishmania guyanensis/efeitos dos fármacos , Leishmania guyanensis/crescimento & desenvolvimento , Leishmania guyanensis/isolamento & purificação , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Masculino , Pessoa de Meia-Idade , Carga Parasitária/métodos , Pentamidina/administração & dosagem , Prevalência , Pele/efeitos dos fármacos , Pele/patologia , Suriname/epidemiologia , Falha de Tratamento , Resultado do Tratamento , Adulto Jovem
5.
Nat Commun ; 6: 8889, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567699

RESUMO

Spin waves, the collective excitations of spins, can emerge as nonlinear solitons at the nanoscale when excited by an electrical current from a nanocontact. These solitons are expected to have essentially cylindrical symmetry (that is, s-like), but no direct experimental observation exists to confirm this picture. Using a high-sensitivity time-resolved magnetic X-ray microscopy with 50 ps temporal resolution and 35 nm spatial resolution, we are able to create a real-space spin-wave movie and observe the emergence of a localized soliton with a nodal line, that is, with p-like symmetry. Micromagnetic simulations explain the measurements and reveal that the symmetry of the soliton can be controlled by magnetic fields. Our results broaden the understanding of spin-wave dynamics at the nanoscale, with implications for the design of magnetic nanodevices.

6.
Phys Rev Lett ; 115(12): 127205, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26431016

RESUMO

We report the direct observation of a localized magnetic soliton in a spin-transfer nanocontact using scanning transmission x-ray microscopy. Experiments are conducted on a lithographically defined 150 nm diameter nanocontact to an ultrathin ferromagnetic multilayer with perpendicular magnetic anisotropy. Element-resolved x-ray magnetic circular dichroism images show an abrupt onset of a magnetic soliton excitation localized beneath the nanocontact at a threshold current. However, the amplitude of the excitation ≃25° at the contact center is far less than that predicted (⪅180°), showing that the spin dynamics is not described by existing models.

7.
Phys Rev Lett ; 115(9): 096601, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26371670

RESUMO

We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10^{-5}µ_{B} on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott's two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10^{-3}µ_{B} per atom. This reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

8.
Philos Trans A Math Phys Eng Sci ; 373(2044)2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25987575

RESUMO

Until recently the important role that spin-physics ('spintronics') plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaron-pair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence.

9.
Nanotechnology ; 25(4): 045303, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24398756

RESUMO

Spin torque nano-oscillators (STNO) are nanoscale devices that can convert a direct current into short wavelength spin wave excitations in a ferromagnetic layer. We show that arrays of STNO can be used to create directional spin wave radiation similarly to electromagnetic antennas. Combining STNO excitations with planar spin waves also creates interference patterns. We show that these interference patterns are static and have information on the wavelength and phase of the spin waves emitted from the STNO. We describe a means of actively controlling spin wave radiation patterns with the direct current flowing through STNO, which is useful in on-chip communication and information processing and could be a promising technique for studying short wavelength spin waves in different materials.

10.
Rev Sci Instrum ; 84(6): 065101, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23822372

RESUMO

We report on an instrument for applying ac and dc magnetic fields by capturing the flux from a rotating permanent magnet and projecting it between two adjustable pole pieces. This can be an alternative to standard electromagnets for experiments with small samples or in probe stations in which an applied magnetic field is needed locally, with advantages that include a compact form-factor, very low power requirements and dissipation as well as fast field sweep rates. This flux capture instrument (FLUXCAP) can produce fields from -400 to +400 mT, with field resolution less than 1 mT. It generates static magnetic fields as well as ramped fields, with ramping rates as high as 10 T/s. We demonstrate the use of this apparatus for studying the magnetotransport properties of spin-valve nanopillars, a nanoscale device that exhibits giant magnetoresistance.

11.
Phys Rev Lett ; 110(20): 207203, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167444

RESUMO

The energy released in a magnetic material by reversing spins as they relax toward equilibrium can lead to a dynamical instability that ignites self-sustained rapid relaxation along a deflagration front that propagates at a constant subsonic speed. Using a trigger heat pulse and transverse and longitudinal magnetic fields, we investigate and control the crossover between thermally driven magnetic relaxation and magnetic deflagration in single crystals of Mn(12)-acetate.

12.
Rev Sci Instrum ; 83(5): 054701, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22667635

RESUMO

We report on a software-defined digitally configurable measurement platform for determining electronic transport properties in nanostructures with small readout signals. By using a high-resolution audio analog-to-digital/digital-to-analog converter in a digitally compensated bridge configuration we significantly increase the measurement speed compared to established techniques and simultaneously acquire large and small signal characteristics. We characterize the performance (16 bit resolution, 100 dB dynamic range at 192 kS/s) and demonstrate the application of this measurement platform for studying the transport properties of spin-valve nanopillars, a two-terminal device that exhibits giant magnetoresistance and whose resistance can be switched between two levels by applied magnetic fields and by currents applied by the audio card. The high resolution and fast sampling capability permits rapid acquisition of deep statistics on the switching of a spin-valve nanopillar and reduces the time to acquire the basic properties of the device - a state-diagram showing the magnetic configurations as function of applied current and magnetic field - by orders of magnitude.

13.
Rev Sci Instrum ; 79(7): 074703, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18681725

RESUMO

A sensor that integrates high-sensitivity micro-Hall effect magnetometry and high-frequency electron paramagnetic resonance spectroscopy capabilities on a single semiconductor chip is presented. The Hall-effect magnetometer (HEM) was fabricated from a two-dimensional electron gas GaAsAlGaAs heterostructure in the form of a cross, with a 50 x 50 microm2 sensing area. A high-frequency microstrip resonator is coupled with two small gaps to a transmission line with a 50 Omega impedance. Different resonator lengths are used to obtain quasi-TEM fundamental resonant modes in the frequency range 10-30 GHz. The resonator is positioned on top of the active area of the HEM, where the magnetic field of the fundamental mode is largest, thus optimizing the conversion of microwave power into magnetic field at the sample position. The two gaps coupling the resonator and transmission lines are engineered differently--the gap to the microwave source is designed to optimize the loaded quality factor of the resonator (Q

14.
J Appl Phys ; 103(7): 7B910-7B9103, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19479002

RESUMO

Dilute frozen solutions of the single molecule magnet Ni(4) (S=4) have been studied using 130 GHz electron paramagnetic resonance (EPR). Despite the random orientation of the molecules, well defined EPR absorption peaks are observed due to the strong variation of the splittings between the different spin states on magnetic field. Temperature dependent studies above 4 K and comparison with simulations enable identification of the spin transitions and determination of the Hamiltonian parameters. The latter are found to be close to those of Ni(4) single crystals. No echo was detected from Ni(4) in pulsed experiments, which sets an upper bound of about 50 ns on the spin coherence time.

15.
Phys Rev Lett ; 93(15): 157202, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15524933

RESUMO

Quantum tunneling of the magnetization in a single molecule magnet has been studied in experiments that combine microwave spectroscopy with high sensitivity magnetic measurements. By monitoring spin-state populations in the presence of microwave radiation, the energy splittings between low lying superpositions of high-spin states of single molecule magnet Ni4 (S=4) have been measured. Absorption linewidths give an upper bound on the rate of decoherence. Pulsed microwave experiments provide a measure of energy relaxation time, which is found to increase with frequency.

16.
Phys Rev Lett ; 93(17): 176604, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15525101

RESUMO

Current-induced excitations in Cu/Co/Cu single ferromagnetic layer nanopillars ( approximately 50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current-induced excitations are observed at high current densities for only one polarity of the current and are absent at the same current densities in symmetric junctions. These observations confirm recent predictions of spin-transfer torque induced spin-wave excitations in single layer junctions with a strong asymmetry in the spin accumulation in the leads.

17.
Microb Ecol ; 48(4): 528-40, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15696386

RESUMO

Species diversity and richness, and seasonal population dynamics of phytoplankton, planktonic protozoa, and bacterioplankton sampled from the epilimnion of Crystal Bog in 2000, were examined in order to test the hypothesis that these groups' diversity and abundance patterns might be linked. Crystal Bog, a humic lake in Vilas County, Wisconsin, is part of the North Temperate Lakes Long-Term Ecological Research Site. Phytoplankton and planktonic protozoa were identified and enumerated in a settling chamber with an inverted microscope. Bacterial cells were enumerated with the use of fluorescence 4', 6'-diamidino-2-phenylindole (DAPI)-staining procedures, and automated ribosomal intergenic spacer analysis (ARISA) was used to assess bacterioplankton diversity. Bacterial cell counts showed little seasonal variation and averaged 2.6 x 10(6) cells/mL over the ice-free season. Phytoplankton and planktonic protozoan numbers varied by up to two orders of magnitude and were most numerous in late spring and summer. Dinoflagellates largely dominated Crystal Bog throughout the ice-free period, specifically Peridiniopsis quadridens in the spring, Peridinium limbatum in summer, and Gymnodinium fuscum and P. quadridens in fall. Brief blooms of Cryptomonas, Dinobryon, and Synura occurred between periods of dinoflagellate domination. The dominant dinoflagellate, Peridinium limbatum, was calculated to have a growth rate of 0.065 day(-1) and a doubling time of 10.7 days. Heterotrophic nanoflagellates (HNFs) were a consistent component of the planktonic protozoa; seasonal patterns were determined for three genera of HNFs (Monosiga, Bicosoeca, and Desmarella moniliformis). Three genera of ciliates (Coleps, Strobilidium, and Strombidium) comprised the greater part of the planktonic protozoa in Crystal Bog. The number of species of planktonic protozoa was too low to calculate a diversity index. Shannon-Weaver diversity indices for phytoplankton and bacterioplankton in the epilimnion followed very similar seasonal patterns in this lake, supporting the hypothesis that in freshwaters, diversity patterns of these groups are linked.


Assuntos
Dinoflagellida/fisiologia , Eucariotos/fisiologia , Água Doce/parasitologia , Fitoplâncton/fisiologia , Animais , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Ecossistema , Água Doce/microbiologia , Concentração de Íons de Hidrogênio , Dinâmica Populacional , Estações do Ano , Wisconsin
18.
Microb Ecol ; 48(4): 550-60, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15696388

RESUMO

Bacterioplankton community composition (BCC) was monitored in a shallow humic lake in northern Wisconsin, USA, over 3 years using automated ribosomal intergenic spacer analysis (ARISA). Comparison of ARISA profiles of bacterial communities over time indicated that BCC was highly variable on a seasonal and annual scale. Nonmetric multidimensional scaling (MDS) analysis indicated little similarity in BCC from year to year. Nevertheless, annual patterns in bacterioplankton community diversity were observed. Trends in bacterioplankton community diversity were correlated to annual patterns in community succession observed for phytoplankton and zooplankton populations, consistent with the notion that food web interactions affect bacterioplankton community structure in this humic lake. Bacterioplankton communities experience a dramatic drop in richness and abundance each year in early summer, concurrent with an increase in the abundance of both mixotrophic and heterotrophic flagellates. A second drop in richness, but not abundance, is observed each year in late summer, coinciding with an intense bloom of the nonphagotrophic dinoflagellate Peridinium limbatum. A relationship between bacterial community composition, size, and abundance and the population dynamics of Daphnia was also observed. The noted synchrony between these major population and species shifts suggests that linkages across trophic levels play a role in determining the annual time course of events for the microbial and metazoan components of the plankton.


Assuntos
Fenômenos Fisiológicos Bacterianos , Plâncton/fisiologia , Microbiologia da Água , Biodiversidade , Ecossistema , Água Doce/química , Hidrocarbonetos/análise , Concentração de Íons de Hidrogênio , Nitrogênio/análise , Fósforo/análise , Dinâmica Populacional , Fatores de Tempo , Wisconsin
19.
Phys Rev Lett ; 91(6): 067203, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12935107

RESUMO

Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars (approximately 100 nm in diameter) have been studied experimentally at low temperatures for large applied fields perpendicular to the layers. At 4.2 K an abrupt and hysteretic increase in resistance is observed at high current densities for one polarity of the current, comparable to the giant magnetoresistance effect observed at low fields. A micromagnetic model that includes a spin-transfer torque suggests that the current induces a complete reversal of the thin Co layer to alignment antiparallel to the applied field--that is, to a state of maximum magnetic energy.

20.
Microb Ecol ; 46(4): 391-405, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12904915

RESUMO

Despite considerable attention in recent years, the composition and dynamics of lake bacterial communities over annual time scales are poorly understood. This study used automated ribosomal intergenic spacer analysis (ARISA) to explore the patterns of change in lake bacterial communities in three temperate lakes over 2 consecutive years. The study lakes included a humic lake, an oligotrophic lake, and a eutrophic lake, and the epilimnetic bacterial communities were sampled every 2 weeks. The patterns of change in bacterial communities indicated that seasonal forces were important in structuring the behavior of the bacterial communities in each lake. All three lakes had relatively stable community composition in spring and fall, but summer changes were dramatic. Summertime variability was often characterized by recurrent drops in bacterial diversity. Specific ARISA fragments derived from these lakes were not constant among lakes or from year to year, and those fragments that did recur in lakes in different years did not exhibit the same seasonal pattern of recurrence. Nonetheless, seasonal patterns observed in 2000 were fairly successful predictors of the rate of change in bacterial communities and in the degree of autocorrelation of bacterial communities in 2001. Thus, seasonal forces may be important structuring elements of these systems as a whole even if they are uncoupled from the dynamics of the individual system components.


Assuntos
Bactérias/genética , Biodiversidade , Eutrofização/fisiologia , Estações do Ano , Microbiologia da Água , Primers do DNA , DNA Espaçador Ribossômico/genética , Eletroforese , Fluorescência , Água Doce/análise , Fatores de Tempo , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...