Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
medRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38633783

RESUMO

Investigating the genetic factors influencing human birth weight may lead to biological insights into fetal growth and long-term health. Genome-wide association studies of birth weight have highlighted associated variants in more than 200 regions of the genome, but the causal genes are mostly unknown. Rare genetic variants with robust evidence of association are more likely to point to causal genes, but to date, only a few rare variants are known to influence birth weight. We aimed to identify genes that harbour rare variants that impact birth weight when carried by either the fetus or the mother, by analysing whole exome sequence data in UK Biobank participants. We annotated rare (minor allele frequency <0.1%) protein-truncating or high impact missense variants on whole exome sequence data in up to 234,675 participants with data on their own birth weight (fetal variants), and up to 181,883 mothers who reported the birth weight of their first child (maternal variants). Variants within each gene were collapsed to perform gene burden tests and for each associated gene, we compared the observed fetal and maternal effects. We identified 8 genes with evidence of rare fetal variant effects on birth weight, of which 2 also showed maternal effects. One additional gene showed evidence of maternal effects only. We observed 10/11 directionally concordant associations in an independent sample of up to 45,622 individuals (sign test P=0.01). Of the genes identified, IGF1R and PAPPA2 (fetal and maternal-acting) have known roles in insulin-like growth factor bioavailability and signalling. PPARG, INHBE and ACVR1C (all fetal-acting) have known roles in adipose tissue regulation and rare variants in the latter two also showed associations with favourable adiposity patterns in adults. We highlight the dual role of PPARG in both adipocyte differentiation and placental angiogenesis. NOS3, NRK, and ADAMTS8 (fetal and maternal-acting) have been implicated in both placental function and hypertension. Analysis of rare coding variants has identified regulators of fetal adipose tissue and fetoplacental angiogenesis as determinants of birth weight, as well as further evidence for the role of insulin-like growth factors.

3.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575728

RESUMO

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , Hepatopatias , Adulto , Humanos , Diabetes Mellitus Tipo 2/genética , Proteômica , Obesidade/complicações , Obesidade/genética , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Cell Genom ; 3(8): 100362, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601970

RESUMO

Obesity contributes substantially to the global burden of disease and has a significant heritable component. Recent large-scale exome sequencing studies identified several genes in which rare, protein-coding variants have large effects on adult body mass index (BMI). Here we extended such work by performing sex-stratified associations in the UK Biobank study (N∼420,000). We identified genes in which rare heterozygous loss-of-function increases adult BMI in women (DIDO1, PTPRG, and SLC12A5) and in men (SLTM), with effect sizes up to ∼8 kg/m2. This is complemented by analyses implicating rare variants in OBSCN and MADD for recalled childhood adiposity. The known functions of these genes, as well as findings of common variant genome-wide pathway enrichment analyses, suggest a role for neuron death, apoptosis, and DNA damage response mechanisms in the susceptibility to obesity across the life-course. These findings highlight the importance of considering sex-specific and life-course effects in the genetic regulation of obesity.

5.
medRxiv ; 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503126

RESUMO

Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.

6.
Nat Med ; 29(7): 1692-1699, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349538

RESUMO

Premature ovarian insufficiency (POI) affects 1% of women and is a leading cause of infertility. It is often considered to be a monogenic disorder, with pathogenic variants in ~100 genes described in the literature. We sought to systematically evaluate the penetrance of variants in these genes using exome sequence data in 104,733 women from the UK Biobank, 2,231 (1.14%) of whom reported at natural menopause under the age of 40 years. We found limited evidence to support any previously reported autosomal dominant effect. For nearly all heterozygous effects on previously reported POI genes, we ruled out even modest penetrance, with 99.9% (13,699 out of 13,708) of all protein-truncating variants found in reproductively healthy women. We found evidence of haploinsufficiency effects in several genes, including TWNK (1.54 years earlier menopause, P = 1.59 × 10-6) and SOHLH2 (3.48 years earlier menopause, P = 1.03 × 10-4). Collectively, our results suggest that, for the vast majority of women, POI is not caused by autosomal dominant variants either in genes previously reported or currently evaluated in clinical diagnostic panels. Our findings, plus previous studies, suggest that most POI cases are likely oligogenic or polygenic in nature, which has important implications for future clinical genetic studies, and genetic counseling for families affected by POI.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Feminino , Humanos , Adulto , Penetrância , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/complicações , Insuficiência Ovariana Primária/patologia , Menopausa Precoce/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
7.
Nat Commun ; 14(1): 307, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658113

RESUMO

Obesity remains an unmet global health burden. Detrimental anatomical distribution of body fat is a major driver of obesity-mediated mortality risk and is demonstrably heritable. However, our understanding of the full genetic contribution to human adiposity is incomplete, as few studies measure adiposity directly. To address this, we impute whole-body imaging adiposity phenotypes in UK Biobank from the 4,366 directly measured participants onto the rest of the cohort, greatly increasing our discovery power. Using these imputed phenotypes in 392,535 participants yielded hundreds of genome-wide significant associations, six of which replicate in independent cohorts. The leading causal gene candidate, ADAMTS14, is further investigated in a mouse knockout model. Concordant with the human association data, the Adamts14-/- mice exhibit reduced adiposity and weight-gain under obesogenic conditions, alongside an improved metabolic rate and health. Thus, we show that phenotypic imputation at scale offers deeper biological insights into the genetics of human adiposity that could lead to therapeutic targets.


Assuntos
Proteínas ADAMTS , Adiposidade , Obesidade , Animais , Humanos , Camundongos , Proteínas ADAMTS/genética , Adiposidade/genética , Índice de Massa Corporal , Genoma , Obesidade/genética , Fenótipo , Aumento de Peso/genética , Camundongos Knockout
8.
Cell Genom ; 2(12): None, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36530175

RESUMO

Type 2 diabetes (T2D) is a heritable metabolic disorder. While population studies have identified hundreds of common genetic variants associated with T2D, the role of rare (frequency < 0.1%) protein-coding variation is less clear. We performed exome sequence analysis in 418,436 (n = 32,374 T2D cases) individuals in the UK Biobank. We identified previously reported genes (GCK, GIGYF1, HNF1A) in addition to missense variants in ZEB2 (n = 31 carriers; odds ratio [OR] = 5.5 [95% confidence interval = 2.5-12.0]; p = 6.4 × 10-7), MLXIPL (n = 245; OR = 2.3 [1.6-3.2]; p = 3.2 × 10-7), and IGF1R (n = 394; OR = 2.4 [1.8-3.2]; p = 1.3 × 10-10). Carriers of damaging missense variants within IGF1R were also shorter (-2.2 cm [-1.8 to -2.7]; p = 1.2 × 10-19) and had higher circulating insulin-like growth factor-1 (IGF-1) protein levels (2.3 nmol/L [1.7-2.9]; p = 2.8 × 10-14), indicating relative IGF-1 resistance. A likely causal role of IGF-1 resistance was supported by Mendelian randomization analyses using common variants. These results increase understanding of the genetic architecture of T2D and highlight the growth hormone/IGF-1 axis as a potential therapeutic target.

9.
Cell Rep ; 40(4): 111136, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35905723

RESUMO

Mechanisms governing regional human adipose tissue (AT) development remain undefined. Here, we show that the long non-coding RNA HOTAIR (HOX transcript antisense RNA) is exclusively expressed in gluteofemoral AT, where it is essential for adipocyte development. We find that HOTAIR interacts with polycomb repressive complex 2 (PRC2) and we identify core HOTAIR-PRC2 target genes involved in adipocyte lineage determination. Repression of target genes coincides with PRC2 promoter occupancy and H3K27 trimethylation. HOTAIR is also involved in modifying the gluteal adipocyte transcriptome through alternative splicing. Gluteal-specific expression of HOTAIR is maintained by defined regions of open chromatin across the HOTAIR promoter. HOTAIR expression levels can be modified by hormonal (estrogen, glucocorticoids) and genetic variation (rs1443512 is a HOTAIR eQTL associated with reduced gynoid fat mass). These data identify HOTAIR as a dynamic regulator of the gluteal adipocyte transcriptome and epigenome with functional importance for human regional AT development.


Assuntos
Complexo Repressor Polycomb 2 , RNA Longo não Codificante/genética , Cromatina , Estrogênios , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/metabolismo , Transcriptoma/genética
10.
PLoS Genet ; 18(6): e1010162, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35653391

RESUMO

Diet is considered as one of the most important modifiable factors influencing human health, but efforts to identify foods or dietary patterns associated with health outcomes often suffer from biases, confounding, and reverse causation. Applying Mendelian randomization in this context may provide evidence to strengthen causality in nutrition research. To this end, we first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank participants. We then converted these associations into direct genetic effects on food exposures by adjusting them for effects mediated via other traits. The SNPs which did not show evidence of mediation were then used for MR, assessing the association between genetically predicted food choices and other risk factors, health outcomes. We show that using all associated SNPs without omitting those which show evidence of mediation, leads to biases in downstream analyses (genetic correlations, causal inference), similar to those present in observational studies. However, MR analyses using SNPs which have only a direct effect on the exposure on food exposures provided unequivocal evidence of causal associations between specific eating patterns and obesity, blood lipid status, and several other risk factors and health outcomes.


Assuntos
Ingestão de Alimentos , Variação Genética , Causalidade , Humanos , Avaliação de Resultados em Cuidados de Saúde , Fatores de Risco
11.
Nat Hum Behav ; 3(9): 950-961, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358974

RESUMO

Excessive alcohol consumption is one of the main causes of death and disability worldwide. Alcohol consumption is a heritable complex trait. Here we conducted a meta-analysis of genome-wide association studies of alcohol consumption (g d-1) from the UK Biobank, the Alcohol Genome-Wide Consortium and the Cohorts for Heart and Aging Research in Genomic Epidemiology Plus consortia, collecting data from 480,842 people of European descent to decipher the genetic architecture of alcohol intake. We identified 46 new common loci and investigated their potential functional importance using magnetic resonance imaging data and gene expression studies. We identify genetic pathways associated with alcohol consumption and suggest genetic mechanisms that are shared with neuropsychiatric disorders such as schizophrenia.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Genes/genética , Predisposição Genética para Doença/genética , Transtornos Mentais/genética , Adulto , Idoso , Alcoolismo/genética , Encéfalo/fisiopatologia , Feminino , Genes/fisiologia , Estudo de Associação Genômica Ampla , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Esquizofrenia/genética , População Branca/genética
13.
Nat Genet ; 51(3): 481-493, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804560

RESUMO

Reduced lung function predicts mortality and is key to the diagnosis of chronic obstructive pulmonary disease (COPD). In a genome-wide association study in 400,102 individuals of European ancestry, we define 279 lung function signals, 139 of which are new. In combination, these variants strongly predict COPD in independent populations. Furthermore, the combined effect of these variants showed generalizability across smokers and never smokers, and across ancestral groups. We highlight biological pathways, known and potential drug targets for COPD and, in phenome-wide association studies, autoimmune-related and other pleiotropic effects of lung function-associated variants. This new genetic evidence has potential to improve future preventive and therapeutic strategies for COPD.


Assuntos
Predisposição Genética para Doença/genética , Pulmão/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fumar/genética
14.
Nat Commun ; 8(1): 910, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030599

RESUMO

Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan.


Assuntos
Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Estilo de Vida , Lipoproteína(a)/genética , Longevidade/genética , Alelos , Índice de Massa Corporal , Doença das Coronárias/sangue , Doença das Coronárias/etiologia , Educação , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina/genética , Lipoproteínas HDL/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Obesidade/complicações , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Fumar/efeitos adversos , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...