Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7077, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925546

RESUMO

The U.S. federal government has established goals of electrifying 50% of new light-duty vehicle sales by 2030 and reducing economy-wide greenhouse gas emissions 50-52% by 2030, from 2005 levels. Here we evaluate the vehicle electrification goal in the context of the economy-wide emissions goal. We use a vehicle fleet model and a life cycle emissions model to project vehicle sales, stock, and emissions. To account for state-level variability in electric vehicle adoption and electric grid emissions factors, we apply the models to each state. By 2030, greenhouse gas emissions are reduced by approximately 25% (from 2005) for the light-duty vehicle fleet, primarily due to fleet turnover of conventional vehicles. By 2035, emissions reductions approach 45% if both vehicle electrification and grid decarbonization goals (100% by 2035) are met. To meet climate goals, the transition to electric vehicles must be accompanied by an accelerated decarbonization of the electric grid and other actions.

2.
Environ Sci Technol ; 56(18): 13391-13397, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36018721

RESUMO

The United States Postal Service (USPS) plans to purchase 165,000 next-generation delivery vehicles (NGDVs) between 2023 and 2032. The USPS submitted an environmental impact statement (EIS) for two NGDV procurement scenarios: (1) 90% internal combustion engine vehicles (ICEVs) and 10% battery electric vehicles (BEVs) ("ICEV scenario") and (2) 100% BEVs ("BEV scenario"). To correct several significant deficiencies in the EIS, we conduct a cradle-to-grave life cycle greenhouse gas (GHG) assessment of these two scenarios. Our analysis improves upon the USPS's EIS by including vehicle production and end-of-life emissions, future grid decarbonization, and more accurate vehicle operating emissions. In our base case, we find that the ICEV and BEV scenarios would result in 15% greater and 8% fewer GHG emissions, respectively, than the USPS estimate. Favorable vehicle and grid development would result in 63% lower BEV scenario emissions than the USPS estimate. Consequently, we calculate a cumulative lifetime emission reduction of 57-82% (14.7-21.4 Mt CO2e) from procuring 100% BEVs instead of 10% BEVs, compared to the USPS's estimate of 10.3 Mt. Given the long NGDV lifetimes, committing to the ICEV scenario squanders an ideal use case for BEVs, jeopardizes meeting our climate goals, and forgoes potential climate and environmental justice co-benefits.


Assuntos
Gases de Efeito Estufa , Animais , Efeito Estufa , Estágios do Ciclo de Vida , Veículos Automotores , Serviços Postais , Emissões de Veículos
3.
Environ Sci Technol ; 56(16): 11798-11806, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35930734

RESUMO

The COVID-19 pandemic has accelerated the growth of e-commerce and automated warehouses, vehicles, and robots and has created new options for grocery supply chains. We report and compare the greenhouse gas (GHG) emissions for a 36-item grocery basket transported along 72 unique paths from a centralized warehouse to the customer, including impacts of micro-fulfillment centers, refrigeration, vehicle automation, and last-mile transportation. Our base case is in-store shopping with last-mile transportation using an internal combustion engine (ICE) SUV (6.0 kg CO2e). The results indicate that emissions reductions could be achieved by e-commerce with micro-fulfillment centers (16-54%), customer vehicle electrification (18-42%), or grocery delivery (22-65%) compared to the base case. In-store shopping with an ICE pick-up truck has the highest emissions of all paths investigated (6.9 kg CO2e) while delivery using a sidewalk automated robot has the least (1.0 kg CO2e). Shopping frequency is an important factor for households to consider, e.g. halving shopping frequency can reduce GHG emissions by 44%. Trip chaining also offers an opportunity to reduce emissions with approximately 50% savings compared to the base case. Opportunities for grocers and households to reduce grocery supply chain carbon footprints are identified and discussed.


Assuntos
COVID-19 , Gases de Efeito Estufa , Pegada de Carbono , Efeito Estufa , Humanos , Pandemias , Meios de Transporte
4.
Environ Sci Technol ; 55(17): 12019-12031, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34423630

RESUMO

Estimates show that 6.2 gigatons of carbon dioxide (CO2) can be captured and utilized across three pathways, concrete, chemical, and minerals, by 2050. However, it is difficult to compare the climate benefit across these three carbon capture and utilization (CCU) pathways to determine the most effective use of captured CO2. The life cycle assessment methods to evaluate the climate benefit of CCU chemicals should additionally account for the change in material properties of concrete due to CO2 utilization. Furthermore, with most CO2 utilization technologies being in the early stages of research and development, the uncertainty and variability in process and inventory data present a significant challenge in evaluating the climate benefit. We present a stochastically determined climate return on investment (ROI) metric to rank and prioritize CO2 utilization across 20 concrete, chemical and mineral pathways based on the realized climate benefit. We show that two concrete pathways, which use CO2 during concrete mixing, and two chemical pathways, which produce formic acid through hydrogenation of CO2 and carbon monoxide through dry reforming of methane, generate the greatest climate ROI and are the only CCU pathways with a higher likelihood of generating a climate benefit than a climate burden.


Assuntos
Dióxido de Carbono , Clima , Mudança Climática , Metano , Minerais
5.
Environ Sci Technol ; 55(14): 10108-10120, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34240846

RESUMO

Electrification of delivery fleets has emerged as an important opportunity to reduce the transportation sector's environmental impact, including reducing greenhouse gas (GHG) emissions. When, where, and how vehicles are charged, however, impact the reduction potential. Not only does the carbon intensity of the grid vary across time and space, but charging decisions also influence battery degradation rates, resulting in more or less frequent battery replacement. Here, we propose a model that accounts for the spatial and temporal differences in charging emissions using marginal emission factors and degradation-induced differences in production emissions using a semi-empirical degradation model. We analyze four different charging strategies and demonstrate that a baseline charging scenario, in which a vehicle is fully charged immediately upon returning to a central depot, results in the highest emissions and employing alternative charging methods can reduce emissions by 8-37%. We show that when, where, and how batteries are charged also impact the total cost of ownership. Although the lowest cost and the lowest emitting charging strategies often align, the lowest cost deployment location for electric delivery vehicles may not be in the same location that maximizes environmental benefits.


Assuntos
Gases de Efeito Estufa , Eletricidade , Efeito Estufa , Veículos Automotores , Meios de Transporte , Emissões de Veículos/análise
6.
Environ Sci Technol ; 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34328327

RESUMO

Increased E-commerce and demand for contactless delivery during the COVID-19 pandemic have fueled interest in robotic package delivery. We evaluate life cycle greenhouse gas (GHG) emissions for automated suburban ground delivery systems consisting of a vehicle (last-mile) and a robot (final-50-feet). Small and large cargo vans (125 and 350 cubic feet; V125 and V350) with an internal combustion engine (ICEV) and battery electric (BEV) powertrains were assessed for three delivery scenarios: (i) conventional, human-driven vehicle with human delivery; (ii) partially automated, human-driven vehicle with robot delivery; and (iii) fully automated, connected automated vehicle (CAV) with robot delivery. The robot's contribution to life cycle GHG emissions is small (2-6%). Compared to the conventional scenario, full automation results in similar GHG emissions for the V350-ICEV but 10% higher for the V125-BEV. Conventional delivery with a V125-BEV provides the lowest GHG emissions, 167 g CO2e/package, while partially automated delivery with a V350-ICEV generates the most at 486 g CO2e/package. Fuel economy and delivery density are key parameters, and electrification of the vehicle and carbon intensity of the electricity have a large impact. CAV power requirements and efficiency benefits largely offset each other, and automation has a moderate impact on life cycle GHG emissions.

7.
Nat Food ; 2(4): 255-263, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37118462

RESUMO

Agriculture accounts for 80% of global freshwater consumption but the environmental impacts of water use are highly localized and depend on water scarcity. The water use impacts of food production should be a key consideration of sustainable diets, yet little is known of the water scarcity demands of diets, especially of individuals. Here we estimate the water scarcity footprint (WSF)-a water use impact metric that accounts for regional scarcity-of individual diets in the United States (n = 16,800) and find a fivefold variation between the highest and lowest quintile of diets ranked by WSF. Larger intakes of some meat, fruit, nuts and vegetables drive these differences. Meat consumption is the greatest contributor (31%) to the WSF of the average diet, and within that, beef contributes about six times that of chicken. Variation between substitutable foods provides insight into diet shifts that can reduce WSF. We introduce a novel, geospatially explicit approach that combines the types and quantities of foods in the diets of individuals, the irrigation water required to produce those foods and the relative scarcity of water where that irrigation occurs.

8.
Environ Sci Technol ; 55(1): 593-603, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33319997

RESUMO

Urine diversion has been proposed as an approach for producing renewable fertilizers and reducing nutrient loads to wastewater treatment plants. Life cycle assessment was used to compare environmental impacts of the operations phase of urine diversion and fertilizer processing systems [via (1) a urine concentration alternative and (2) a struvite precipitation and ion exchange alternative] at a city scale to conventional systems. Scenarios in Vermont, Michigan, and Virginia were modeled, along with additional sensitivity analyses to understand the importance of key parameters, such as the electricity grid and wastewater treatment method. Both urine diversion technologies had better environmental performance than the conventional system and led to reductions of 29-47% in greenhouse gas emissions, 26-41% in energy consumption, approximately half the freshwater use, and 25-64% in eutrophication potential, while acidification potential ranged between a 24% decrease to a 90% increase. In some situations, wastewater treatment chemical requirements were eliminated. The environmental performance improvement was usually dependent on offsetting the production of synthetic fertilizers. This study suggests that urine diversion could be applied broadly as a strategy for both improving wastewater management and decarbonization.


Assuntos
Fertilizantes , Estágios do Ciclo de Vida , Animais , Cidades , Michigan , Vermont , Virginia
9.
Am J Obstet Gynecol ; 223(2): 225.e1-225.e7, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32067971

RESUMO

BACKGROUND: Healthcare systems in the United States have increasingly turned toward the use of disposable medical equipment in an attempt to save time, lower costs, and reduce the transmission of infections. However, the use of disposable instruments is associated with increased solid waste production and may have negative impacts on the environment, such as increased greenhouse gas emissions. OBJECTIVE: The purpose of this study was to inform this discussion; we applied life cycle assessment methods to evaluate the carbon footprints of 3 vaginal specula: a single-use acrylic model and 2 reusable stainless steel models. STUDY DESIGN: The functional unit of the study was defined as the completion of 20 gynecologic examinations by either type of speculum. The greenhouse gas emissions (eg, carbon dioxide, methane, nitrous oxide) across all life cycle stages, which includes material production and manufacturing, transportation, use and reprocessing, and end-of-life, were analyzed with the use of SimaPro life cycle assessment software and converted into carbon dioxide equivalents. RESULTS: The reusable stainless steel grade 304 speculum was found to have a lesser carbon footprint over multiple model scenarios (different reprocessing techniques, autoclave loading/efficiency, and number of uses) than either the reusable stainless steel grade 316 or the disposable acrylic specula. The material production and manufacturing phase contributed most heavily to the total life cycle carbon footprint of the acrylic speculum, whereas the use and reprocessing phase contributed most to the carbon footprints of both stainless steel specula. CONCLUSION: The use of disposable vaginal specula is associated with increased greenhouse gas equivalents compared with reusable alternatives with no significant difference in clinical utility. These findings can be used to inform decision-making by healthcare systems, because they weigh a wide range of considerations in making final purchase decisions; similar analytic methods can and should be applied to other components of health systems' waste streams.


Assuntos
Pegada de Carbono , Equipamentos Descartáveis/economia , Esterilização/economia , Instrumentos Cirúrgicos , Humanos
10.
Nat Commun ; 10(1): 3413, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363084

RESUMO

Deep decarbonization of electricity production is a societal challenge that can be achieved with high penetrations of variable renewable energy. We investigate the potential of energy storage technologies to reduce renewable curtailment and CO2 emissions in California and Texas under varying emissions taxes. We show that without energy storage, adding 60 GW of renewables to California achieves 72% CO2 reductions (relative to a zero-renewables case) with close to one third of renewables being curtailed. Some energy storage technologies, on the other hand, allow 90% CO2 reductions from the same renewable penetrations with as little as 9% renewable curtailment. In Texas, the same renewable-deployment level leads to 54% emissions reductions with close to 3% renewable curtailment. Energy storage can allow 57% emissions reductions with as little as 0.3% renewable curtailment. We also find that generator flexibility can reduce curtailment and the amount of energy storage that is needed for renewable integration.

11.
Nat Commun ; 10(1): 3909, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451688

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nat Commun ; 10(1): 1555, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967534

RESUMO

Interest and investment in electric vertical takeoff and landing aircraft (VTOLs), commonly known as flying cars, have grown significantly. However, their sustainability implications are unclear. We report a physics-based analysis of primary energy and greenhouse gas (GHG) emissions of VTOLs vs. ground-based cars. Tilt-rotor/duct/wing VTOLs are efficient when cruising but consume substantial energy for takeoff and climb; hence, their burdens depend critically on trip distance. For our base case, traveling 100 km (point-to-point) with one pilot in a VTOL results in well-to-wing/wheel GHG emissions that are 35% lower but 28% higher than a one-occupant internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV), respectively. Comparing fully loaded VTOLs (three passengers) with ground-based cars with an average occupancy of 1.54, VTOL GHG emissions per passenger-kilometer are 52% lower than ICEVs and 6% lower than BEVs. VTOLs offer fast, predictable transportation and could have a niche role in sustainable mobility.

13.
Environ Sci Technol ; 53(8): 4063-4077, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30892881

RESUMO

A large portion of life cycle transportation impacts occur during vehicle operation, and key improvement strategies include increasing powertrain efficiency, vehicle electrification, and lightweighting vehicles by reducing their mass. The potential energy benefits of vehicle lightweighting are large, given that 29.5 EJ was used in all modes of U.S. transportation in 2016, and roughly half of the energy spent in wheeled transportation and the majority of energy spent in aircraft is used to move vehicle mass. We collect and review previous work on lightweighting, identify key parameters affecting vehicle environmental performance (e.g., vehicle mode, fuel type, material type, and recyclability), and propose a set of 10 principles, with examples, to guide environmental improvement of vehicle systems through lightweighting. These principles, based on a life cycle perspective and taken as a set, allow a wide range of stakeholders (designers, policy-makers, and vehicle manufacturers and their material and component suppliers) to evaluate the trade-offs inherent in these complex systems. This set of principles can be used to evaluate trade-offs between impact categories and to help avoid shifting of burdens to other life cycle phases in the process of improving use-phase environmental performance.


Assuntos
Meios de Transporte , Emissões de Veículos , Veículos Automotores , Fenômenos Físicos
15.
Environ Res Lett ; 13(4): 044004, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29853988

RESUMO

Human food systems are a key contributor to climate change and other environmental concerns. While the environmental impacts of diets have been evaluated at the aggregate level, few studies, and none for the US, have focused on individual self-selected diets. Such work is essential for estimating a distribution of impacts, which, in turn, is key to recommending policies for driving consumer demand towards lower environmental impacts. To estimate the impact of US dietary choices on greenhouse gas emissions (GHGE) and energy demand, we built a food impacts database from an exhaustive review of food life cycle assessment (LCA) studies and linked it to over 6000 as-consumed foods and dishes from 1 day dietary recall data on adults (N = 16 800) in the nationally representative 2005-2010 National Health and Nutrition Examination Survey. Food production impacts of US self-selected diets averaged 4.7 kg CO2 eq. person-1 day-1 (95% CI: 4.6-4.8) and 25.2 MJ non-renewable energy demand person-1 day-1 (95% CI: 24.6-25.8). As has been observed previously, meats and dairy contribute the most to GHGE and energy demand of US diets; however, beverages also emerge in this study as a notable contributor. Although linking impacts to diets required the use of many substitutions for foods with no available LCA studies, such proxy substitutions accounted for only 3% of diet-level GHGE. Variability across LCA studies introduced a ±19% range on the mean diet GHGE, but much of this variability is expected to be due to differences in food production locations and practices that can not currently be traced to individual dietary choices. When ranked by GHGE, diets from the top quintile accounted for 7.9 times the GHGE as those from the bottom quintile of diets. Our analyses highlight the importance of utilizing individual dietary behaviors rather than just population means when considering diet shift scenarios.

16.
Environ Sci Technol ; 52(5): 3249-3256, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29446302

RESUMO

Although recent studies of connected and automated vehicles (CAVs) have begun to explore the potential energy and greenhouse gas (GHG) emission impacts from an operational perspective, little is known about how the full life cycle of the vehicle will be impacted. We report the results of a life cycle assessment (LCA) of Level 4 CAV sensing and computing subsystems integrated into internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) platforms. The results indicate that CAV subsystems could increase vehicle primary energy use and GHG emissions by 3-20% due to increases in power consumption, weight, drag, and data transmission. However, when potential operational effects of CAVs are included (e.g., eco-driving, platooning, and intersection connectivity), the net result is up to a 9% reduction in energy and GHG emissions in the base case. Overall, this study highlights opportunities where CAVs can improve net energy and environmental performance.


Assuntos
Condução de Veículo , Emissões de Veículos , Fontes de Energia Elétrica , Eletricidade , Efeito Estufa
17.
Environ Sci Technol ; 50(17): 8937-53, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27499211

RESUMO

Due to the complexity of power systems, tracking emissions attributable to a specific electrical load is a daunting challenge but essential for many environmental impact studies. Currently, no consensus exists on appropriate methods for quantifying emissions from particular electricity loads. This paper reviews a wide range of the existing methods, detailing their functionality, tractability, and appropriate use. We identified and reviewed 32 methods and models and classified them into two distinct categories: empirical data and relationship models and power system optimization models. To illustrate the impact of method selection, we calculate the CO2 combustion emissions factors associated with electric-vehicle charging using 10 methods at nine charging station locations around the United States. Across the methods, we found an up to 68% difference from the mean CO2 emissions factor for a given charging site among both marginal and average emissions factors and up to a 63% difference from the average across average emissions factors. Our results underscore the importance of method selection and the need for a consensus on approaches appropriate for particular loads and research questions being addressed in order to achieve results that are more consistent across studies and allow for soundly supported policy decisions. The paper addresses this issue by offering a set of recommendations for determining an appropriate model type on the basis of the load characteristics and study objectives.


Assuntos
Poluentes Atmosféricos , Eletricidade , Modelos Teóricos , Estados Unidos , Emissões de Veículos
18.
Environ Sci Technol ; 50(2): 1046-55, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26629882

RESUMO

The introduction of energy storage technologies to the grid could enable greater integration of renewables, improve system resilience and reliability, and offer cost effective alternatives to transmission and distribution upgrades. The integration of energy storage systems into the electrical grid can lead to different environmental outcomes based on the grid application, the existing generation mix, and the demand. Given this complexity, a framework is needed to systematically inform design and technology selection about the environmental impacts that emerge when considering energy storage options to improve sustainability performance of the grid. To achieve this, 12 fundamental principles specific to the design and grid application of energy storage systems are developed to inform policy makers, designers, and operators. The principles are grouped into three categories: (1) system integration for grid applications, (2) the maintenance and operation of energy storage, and (3) the design of energy storage systems. We illustrate the application of each principle through examples published in the academic literature, illustrative calculations, and a case study with an off-grid application of vanadium redox flow batteries (VRFBs). In addition, trade-offs that can emerge between principles are highlighted.


Assuntos
Fontes de Energia Elétrica , Centrais Elétricas , Tecnologia/métodos , Meio Ambiente , Tecnologia/instrumentação , Vanádio
19.
Environ Sci Technol ; 49(16): 10209-16, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26168234

RESUMO

Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.


Assuntos
Gasolina/análise , Modelos Teóricos , Veículos Automotores , Efeito Estufa , Magnésio/química , Aço/química , Emissões de Veículos/análise
20.
Environ Sci Technol ; 49(5): 3067-75, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25636136

RESUMO

Emerging products and technologies pose unique challenges for the life cycle assessment (LCA) community, given the lack of data and inherent uncertainties regarding their development. An emerging technology that has the potential to be transformative and effect broad-scale change within society, as well as the underpinning assumptions associated with its life cycle, is particularly difficult to analyze. Despite the associated challenges, LCA methods must be developed for transformative technologies. The greatest improvement potential occurs at the early phases of technology development; therefore, prospective LCA results can be used to anticipate potential unintended consequences and develop design pathways that lead to preferential outcomes. This paper identifies and categorizes ten factors that influence the LCA results of transformative technologies in order to provide a formal structure for determining appropriate factors for inclusion within an LCA. Appropriate factors for an analysis should be selected according to the overall research questions of the study and are applicable to both attributional and consequential approaches to LCA.


Assuntos
Ecologia , Invenções , Modelos Teóricos , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...