Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37353593

RESUMO

Lactic acid bacteria (LAB) in the microbiota play an important role in human and animal health and, when used as probiotics, can contribute to an increased growth performance in livestock management. Animals living in their native habitat can serve as natural sources of microorganisms, so isolation of LAB strains from wild boars could provide the opportunity to develop effective probiotics to improve production in swine industry. In this study, the probiotic potential of 56 LAB isolates, originated from the ileum, colon, caecum and faeces of 5 wild boars, were assessed in vitro in details. Their taxonomic identity at species level and their antibacterial activity against four representative strains of potentially pathogenic bacteria were determined. The ability to tolerate low pH and bile salt, antibiotic susceptibility, bile salt hydrolase activity and lack of hemolysis were tested. Draft genome sequences of ten Limosilactobacillus mucosae and three Leuconostoc suionicum strains were determined. Bioinformatic analysis excluded the presence of any known acquired antibiotic resistance genes. Three genes, encoding mesentericin B105 and two different bacteriocin-IIc class proteins, as well as two genes with possible involvement in mesentericin secretion (mesE) and transport (mesD) were identified in two L. suionicum strains. Lam29 protein, a component of an ABC transporter with proved function as mucin- and epithelial cell-adhesion factor, and a bile salt hydrolase gene were found in all ten L. mucosae genomes. Comprehensive reconsideration of all data helps to select candidate strains to assess their probiotic potential further in animal experiments.

2.
J Vet Res ; 64(1): 111-118, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258807

RESUMO

INTRODUCTION: Land application of manure that contains antibiotics and resistant bacteria may facilitate the establishment of an environmental reservoir of antibiotic-resistant microbes, promoting their dissemination into agricultural and natural habitats. The main objective of this study was to search for acquired antibiotic resistance determinants in the gut microbiota of wild boar populations living in natural habitats. MATERIAL AND METHODS: Gastrointestinal samples of free-living wild boars were collected in the Zemplén Mountains in Hungary and were characterised by culture-based, metagenomic, and molecular microbiological methods. Bioinformatic analysis of the faecal microbiome of a hunted wild boar from Japan was used for comparative studies. Also, shotgun metagenomic sequencing data of two untreated sewage wastewater samples from North Pest (Hungary) from 2016 were analysed by bioinformatic methods. Minimum spanning tree diagrams for seven-gene MLST profiles of 104 E. coli strains isolated in Europe from wild boars and domestic pigs were generated in Enterobase. RESULTS: In the ileum of a diarrhoeic boar, a dominant E. coli O112ab:H2 strain with intermediate resistance to gentamicin, tobramycin, and amikacin was identified, displaying sequence type ST388 and harbouring the EAST1 toxin astA gene. Metagenomic analyses of the colon and rectum digesta revealed the presence of the tetQ, tetW, tetO, and mefA antibiotic resistance genes that were also detected in the gut microbiome of four other wild boars from the mountains. Furthermore, the tetQ and cfxA genes were identified in the faecal microbiome of a hunted wild boar from Japan. CONCLUSION: The gastrointestinal microbiota of the free-living wild boars examined in this study carried acquired antibiotic resistance determinants that are highly prevalent among domestic livestock populations.

3.
Planta ; 251(1): 20, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31781986

RESUMO

MAIN CONCLUSION: Certain apple cultivars accumulate to high levels in their nectar and stigma exudate an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora. To prevent microbial infections, flower nectars and stigma exudates contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia-resistant apples are not available, certain cultivars are tolerant. It was reported that in flower infection assay, the 'Freedom' cultivar was Erwinia tolerant, while the 'Jonagold' cultivar was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed, we found that an acidic chitinase III protein (Machi3-1) selectively accumulates to very high levels in the nectar and the stigma exudate of the 'Freedom' cultivar. We show that three different Machi3-1 alleles exist in apple cultivars and that only the 5B-Machi3-1 allele expresses the Machi3-1 protein in the nectar and the stigma exudate. We demonstrate that the 5B-Machi3-1 allele was introgressed from the Malus floribunda 821 clone into different apple cultivars including the 'Freedom'. Our data suggest that MYB-binding site containing repeats of the 5B-Machi3-1 promoter is responsible for the strong nectar- and stigma exudate-specific expression. As we found that in vitro, the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 protein could partially protect 5B-Machi3-1 allele containing cultivars against Erwinia by inhibiting the multiplication and biofilm formation of the pathogen in the stigma exudate and in the nectar.


Assuntos
Quitinases/metabolismo , Erwinia amylovora/fisiologia , Flores/metabolismo , Malus/enzimologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Exsudatos de Plantas/metabolismo , Néctar de Plantas/metabolismo , Alelos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Quitinases/química , Resistência à Doença , Erwinia amylovora/efeitos dos fármacos , Erwinia amylovora/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Malus/efeitos dos fármacos , Malus/genética , Especificidade de Órgãos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética
4.
Nucleic Acids Res ; 45(7): 4174-4188, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28062855

RESUMO

When a ribosome reaches a stop codon, the eukaryotic Release Factor 1 (eRF1) binds to the A site of the ribosome and terminates translation. In yeasts and plants, both over- and underexpression of eRF1 lead to altered phenotype indicating that eRF1 expression should be strictly controlled. However, regulation of eRF1 level is still poorly understood. Here we show that expression of plant eRF1 is controlled by a complex negative autoregulatory circuit, which is based on the unique features of the 3΄untranslated region (3΄UTR) of the eRF1-1 transcript. The stop codon of the eRF1-1 mRNA is in a translational readthrough promoting context, while its 3΄UTR induces nonsense-mediated decay (NMD), a translation termination coupled mRNA degradation mechanism. We demonstrate that readthrough partially protects the eRF1-1 mRNA from its 3΄UTR induced NMD, and that elevated eRF1 levels inhibit readthrough and stimulate NMD. Thus, high eRF1 level leads to reduced eRF1-1 expression, as weakened readthrough fails to protect the eRF1-1 mRNA from the more intense NMD. This eRF1 autoregulatory circuit might serve to finely balance general translation termination efficiency.


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Degradação do RNAm Mediada por Códon sem Sentido , Fatores de Terminação de Peptídeos/genética , Biossíntese de Proteínas , Regiões 3' não Traduzidas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Homeostase , Íntrons , Modelos Genéticos , Elongação Traducional da Cadeia Peptídica , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/metabolismo , Nicotiana/genética
5.
Plant J ; 73(1): 50-62, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22974464

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that identifies and degrades mRNAs containing premature termination codons (PTCs). If translation terminates at a PTC, the UPF1 NMD factor binds the terminating ribosome and recruits UPF2 and UPF3 to form a functional NMD complex, which triggers the rapid decay of the PTC-containing transcript. Although NMD deficiency is seedling lethal in plants, the mechanism of plant NMD remains poorly understood. To understand how the formation of the NMD complex leads to transcript decay we functionally mapped the UPF1 and SMG7 plant NMD factors, the putative key players of NMD target degradation. Our data indicate that the cysteine-histidine-rich (CH) and helicase domains of UPF1 are only essential for the early steps of NMD, whereas the heavily phosphorylated N- and C-terminal regions play a redundant but essential role in the target transcript degradation steps of NMD. We also show that both the N- and the C-terminal regions of SMG7 are essential for NMD. The N terminus contains a phosphoserine-binding domain that is required for the early steps of NMD, whereas the C terminus is required to trigger the degradation of NMD target transcripts. Moreover, SMG7 is a P-body component that can also remobilize UPF1 from the cytoplasm into processing bodies (P bodies). We propose that the N- and C-terminal phosphorylated regions of UPF1 recruit SMG7 to the functional NMD complex, and then SMG7 transports the PTC-containing transcripts into P bodies for degradation.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte/fisiologia , Exorribonucleases/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido/fisiologia , Fosforilação , Proteínas de Plantas/fisiologia , RNA Helicases/fisiologia
6.
EMBO J ; 27(11): 1585-95, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18451801

RESUMO

Nonsense-mediated mRNA decay (NMD) is a quality control system that degrades mRNAs containing premature termination codons. Although NMD is well characterized in yeast and mammals, plant NMD is poorly understood. We have undertaken the functional dissection of NMD pathways in plants. Using an approach that allows rapid identification of plant NMD trans factors, we demonstrated that two plant NMD pathways coexist, one eliminates mRNAs with long 3'UTRs, whereas a distinct pathway degrades mRNAs harbouring 3'UTR-located introns. We showed that UPF1, UPF2 and SMG-7 are involved in both plant NMD pathways, whereas Mago and Y14 are required only for intron-based NMD. The molecular mechanism of long 3'UTR-based plant NMD resembled yeast NMD, whereas the intron-based NMD was similar to mammalian NMD, suggesting that both pathways are evolutionarily conserved. Interestingly, the SMG-7 NMD component is targeted by NMD, suggesting that plant NMD is autoregulated. We propose that a complex, autoregulated NMD mechanism operated in stem eukaryotes, and that despite aspect of the mechanism being simplified in different lineages, feedback regulation was retained in all kingdoms.


Assuntos
Regiões 3' não Traduzidas/metabolismo , Códon sem Sentido/metabolismo , Proteínas de Plantas/metabolismo , Estabilidade de RNA , RNA de Plantas/metabolismo , Sequência de Aminoácidos , Homeostase , Íntrons , Dados de Sequência Molecular , Proteínas de Plantas/genética
7.
Antonie Van Leeuwenhoek ; 91(4): 373-91, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17124547

RESUMO

Mating type in filamentous ascomycetes is controlled by idiomorphic alleles, named MAT1-1 and MAT1-2, which contain 1-3 genes. Of these genes MAT1-1-1 and MAT1-2-1 encode putative transcription factors and are thus considered to be the major regulators of sexual communication and mating. Fungi with no known sexual stage may also have fully functional mating type genes and therefore it was plausible to hypothesize that the MAT products may also regulate other types of genes not involved directly in the mating process. To identify putative target genes of these transcription factors in Fusarium verticillioides, DeltaMAT1-2-1 knock out mutants were produced and transcript profiles of mutant and wild type were compared by means of differential cDNA hybridization. Clones, either up- or down-regulated in the DeltaMAT1-2-1 mutant were sequenced and a total of 248 sequences were blasted against the NCBI database as well as the Gibberella zeae and Gibberella moniliformis genomes. Fifty-five percent of the clones were down-regulated in the mutant, indicating that the MAT1-2-1 product positively affected these tagged sequences. On the other hand, 45% were found to be up-regulated in the mutant, suggesting that the MAT1-2-1 product also exerted a negative regulatory function on this set of genes. Sequences involved in protein synthesis and metabolism occurred more frequently among the clones up-regulated in the mutant, whereas genes belonging to cell signalling and communication were especially frequently tagged among the sequences down-regulated in the mutant.


Assuntos
DNA Complementar/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Mutação , Hibridização de Ácido Nucleico
8.
Nucleic Acids Res ; 34(21): 6147-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17088291

RESUMO

Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control mechanism that identifies and eliminates aberrant mRNAs containing a premature termination codon (PTC). Although, key trans-acting NMD factors, UPF1, UPF2 and UPF3 are conserved in yeast and mammals, the cis-acting NMD elements are different. In yeast, short specific sequences or long 3'-untranslated regions (3'-UTRs) render an mRNA subject to NMD, while in mammals' 3'-UTR located introns trigger NMD. Plants also possess an NMD system, although little is known about how it functions. We have elaborated an agroinfiltration-based transient NMD assay system and defined the cis-acting elements that mediate plant NMD. We show that unusually long 3'-UTRs or the presence of introns in the 3'-UTR can subject mRNAs to NMD. These data suggest that both long 3'-UTR-based and intron-based PTC definition operated in the common ancestors of extant eukaryotes (stem eukaryotes) and support the theory that intron-based NMD facilitated the spreading of introns in stem eukaryotes. We have also identified plant UPF1 and showed that tethering of UPF1 to either the 5'- or 3'-UTR of an mRNA results in reduced transcript accumulation. Thus, plant UPF1 might bind to mRNA in a late, irreversible phase of NMD.


Assuntos
Regiões 3' não Traduzidas/química , Códon sem Sentido , Regulação da Expressão Gênica de Plantas , Íntrons , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Regiões 5' não Traduzidas/química , Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , RNA Helicases/fisiologia , Rhizobium/genética
9.
Appl Environ Microbiol ; 72(10): 6527-32, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17021201

RESUMO

For two fungal strains to be vegetatively compatible and capable of forming a stable vegetative heterokaryon they must carry matching alleles at a series of loci variously termed het or vic genes. Cloned het/vic genes from Neurospora crassa and Podospora anserina have no obvious functional similarity and have various cellular functions. Our objective was to identify the homologue of the Neurospora het-c gene in Fusarium proliferatum and to determine if this gene has a vegetative compatibility function in this economically important and widely dispersed fungal pathogen. In F. proliferatum and five other closely related Fusarium species we found a few differences in the DNA sequence, but the changes were silent and did not alter the amino acid sequence of the resulting protein. Deleting the gene altered sexual fertility as the female parent, but it did not alter male fertility or existing vegetative compatibility interactions. Replacement of the allele-specific portion of the coding sequence with the sequence of an alternate allele in N. crassa did not result in a vegetative incompatibility response in transformed strains of F. proliferatum. Thus, the fphch gene in Fusarium appears unlikely to have the vegetative compatibility function associated with its homologue in N. crassa. These results suggest that the vegetative compatibility phenotype may result from convergent evolution. Thus, the genes involved in this process may need to be identified at the species level or at the level of a group of species and could prove to be attractive targets for the development of antifungal agents.


Assuntos
Proteínas Fúngicas/química , Fusarium/genética , Neurospora crassa/genética , Alelos , Clonagem Molecular , DNA Fúngico/análise , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento , Dados de Sequência Molecular , Homologia de Sequência do Ácido Nucleico
10.
J Virol ; 80(12): 5747-56, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731914

RESUMO

In plants, RNA silencing (RNA interference) is an efficient antiviral system, and therefore successful virus infection requires suppression of silencing. Although many viral silencing suppressors have been identified, the molecular basis of silencing suppression is poorly understood. It is proposed that various suppressors inhibit RNA silencing by targeting different steps. However, as double-stranded RNAs (dsRNAs) play key roles in silencing, it was speculated that dsRNA binding might be a general silencing suppression strategy. Indeed, it was shown that the related aureusvirus P14 and tombusvirus P19 suppressors are dsRNA-binding proteins. Interestingly, P14 is a size-independent dsRNA-binding protein, while P19 binds only 21-nucleotide ds-sRNAs (small dsRNAs having 2-nucleotide 3' overhangs), the specificity determinant of the silencing system. Much evidence supports the idea that P19 inhibits silencing by sequestering silencing-generated viral ds-sRNAs. In this study we wanted to test the hypothesis that dsRNA binding is a general silencing suppression strategy. Here we show that many plant viral silencing suppressors bind dsRNAs. Beet yellows virus Peanut P21, clump virus P15, Barley stripe mosaic virus gammaB, and Tobacco etch virus HC-Pro, like P19, bind ds-sRNAs size-selectively, while Turnip crinkle virus CP is a size-independent dsRNA-binding protein, which binds long dsRNAs as well as ds-sRNAs. We propose that size-selective ds-sRNA-binding suppressors inhibit silencing by sequestering viral ds-sRNAs, whereas size-independent dsRNA-binding suppressors inactivate silencing by sequestering long dsRNA precursors of viral sRNAs and/or by binding ds-sRNAs. The findings that many unrelated silencing suppressors bind dsRNA suggest that dsRNA binding is a general silencing suppression strategy which has evolved independently many times.


Assuntos
Vírus de Plantas/genética , Interferência de RNA , Vírus de RNA/genética , RNA de Cadeia Dupla/fisiologia , Proteínas Virais/genética , Proteínas de Ligação a RNA/fisiologia
11.
J Virol ; 79(11): 7217-26, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15890960

RESUMO

RNA silencing is a conserved eukaryotic gene regulatory system in which sequence specificity is determined by small RNAs. Plant RNA silencing also acts as an antiviral mechanism; therefore, viral infection requires expression of a silencing suppressor. The mechanism and the evolution of silencing suppression are still poorly understood. Tombusvirus open reading frame (ORF) 5-encoded P19 is a size-selective double-stranded RNA (dsRNA) binding protein that suppresses silencing by sequestering double-stranded small interfering RNAs (siRNAs), the specificity determinant of the antiviral silencing system. To better understand the evolution of silencing suppression, we characterized the suppressor of the type member of Aureusviruses, the closest relatives of the genus Tombusvirus. We show that the Pothos latent virus (PoLV) ORF 5-encoded P14 is an efficient suppressor of both virus- and transgene-induced silencing. Findings that in vitro P14 binds dsRNAs and double-stranded siRNAs without obvious size selection suggest that P14, unlike P19, can suppress silencing by sequestering both long dsRNA and double-stranded siRNA components of the silencing machinery. Indeed, P14 prevents the accumulation of hairpin transcript-derived siRNAs, indicating that P14 inhibits inverted repeat-induced silencing by binding the long dsRNA precursors of siRNAs. However, viral siRNAs accumulate to high levels in PoLV-infected plants; therefore, P14 might inhibit virus-induced silencing by sequestering double-stranded siRNAs. Finally, sequence analyses suggest that P14 and P19 suppressors diverged from an ancient dsRNA binding suppressor that evolved as a nested protein within the common ancestor of aureusvirus-tombusvirus movement proteins.


Assuntos
Inativação Gênica , RNA de Plantas/genética , Tombusviridae/fisiologia , Tombusviridae/patogenicidade , Proteínas Virais/fisiologia , Genes de Plantas , Proteínas de Fluorescência Verde/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Proteínas Recombinantes/genética , Supressão Genética , Nicotiana/genética , Nicotiana/metabolismo , Tombusviridae/genética , Tombusvirus/genética , Tombusvirus/patogenicidade , Tombusvirus/fisiologia , Proteínas Virais/genética
12.
Appl Environ Microbiol ; 70(8): 4419-23, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15294768

RESUMO

To assess the potential for mating in several Fusarium species with no known sexual stage, we developed degenerate and semidegenerate oligonucleotide primers to identify conserved mating type (MAT) sequences in these fungi. The putative alpha and high-mobility-group (HMG) box sequences from Fusarium avenaceum, F. culmorum, F. poae, and F. semitectum were compared to similar sequences that were described previously for other members of the genus. The DNA sequences of the regions flanking the amplified MAT regions were obtained by inverse PCR. These data were used to develop diagnostic primers suitable for the clear amplification of conserved mating type sequences from any member of the genus Fusarium. By using these diagnostic primers, we identified mating types of 122 strains belonging to 22 species of Fusarium. The alpha box and the HMG box from the mating type genes are transcribed in F. avenaceum, F. culmorum, F. poae, and F. semitectum. The novelty of the PCR-based mating type identification system that we developed is that this method can be used on a wide range of Fusarium species, which have proven or expected teleomorphs in different ascomycetous genera, including Calonectria, Gibberella, and Nectria.


Assuntos
Cruzamentos Genéticos , Proteínas Fúngicas/genética , Fusarium/genética , Análise de Sequência de DNA , Proteínas Fúngicas/metabolismo , Fusarium/classificação , Fusarium/fisiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...