Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(D1): D693-D700, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34755880

RESUMO

Rhea (https://www.rhea-db.org) is an expert-curated knowledgebase of biochemical reactions based on the chemical ontology ChEBI (Chemical Entities of Biological Interest) (https://www.ebi.ac.uk/chebi). In this paper, we describe a number of key developments in Rhea since our last report in the database issue of Nucleic Acids Research in 2019. These include improved reaction coverage in Rhea, the adoption of Rhea as the reference vocabulary for enzyme annotation in the UniProt knowledgebase UniProtKB (https://www.uniprot.org), the development of a new Rhea website, and the designation of Rhea as an ELIXIR Core Data Resource. We hope that these and other developments will enhance the utility of Rhea as a reference resource to study and engineer enzymes and the metabolic systems in which they function.


Assuntos
Fenômenos Químicos , Bases de Dados Factuais , Software , Animais , Humanos , Internet , Bases de Conhecimento
2.
Genome Res ; 27(5): 885-896, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28420692

RESUMO

Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Genoma de Planta , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Translocação Genética , Triticum/genética , Algoritmos , Mapeamento de Sequências Contíguas/normas , Anotação de Sequência Molecular/normas , Polimorfismo Genético , Poliploidia
3.
Plant Genome ; 9(1)2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27898761

RESUMO

The genome sequences of many important Triticeae species, including bread wheat ( L.) and barley ( L.), remained uncharacterized for a long time because their high repeat content, large sizes, and polyploidy. As a result of improvements in sequencing technologies and novel analyses strategies, several of these have recently been deciphered. These efforts have generated new insights into Triticeae biology and genome organization and have important implications for downstream usage by breeders, experimental biologists, and comparative genomicists. transPLANT () is an EU-funded project aimed at constructing hardware, software, and data infrastructure for genome-scale research in the life sciences. Since the Triticeae data are intrinsically complex, heterogenous, and distributed, the transPLANT consortium has undertaken efforts to develop common data formats and tools that enable the exchange and integration of data from distributed resources. Here we present an overview of the individual Triticeae genome resources hosted by transPLANT partners, introduce the objectives of transPLANT, and outline common developments and interfaces supporting integrated data access.


Assuntos
Genoma de Planta , Genômica/métodos , Poaceae/genética , Evolução Molecular , Hordeum/genética , Poliploidia , Triticum/genética
4.
Nucleic Acids Res ; 44(D1): D574-80, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578574

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Invertebrados/genética , Animais , Diploide , Eucariotos/genética , Variação Genética , Genoma , Poliploidia , Alinhamento de Sequência
5.
Nucleic Acids Res ; 44(D1): D1133-40, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26553803

RESUMO

Gramene (http://www.gramene.org) is an online resource for comparative functional genomics in crops and model plant species. Its two main frameworks are genomes (collaboration with Ensembl Plants) and pathways (The Plant Reactome and archival BioCyc databases). Since our last NAR update, the database website adopted a new Drupal management platform. The genomes section features 39 fully assembled reference genomes that are integrated using ontology-based annotation and comparative analyses, and accessed through both visual and programmatic interfaces. Additional community data, such as genetic variation, expression and methylation, are also mapped for a subset of genomes. The Plant Reactome pathway portal (http://plantreactome.gramene.org) provides a reference resource for analyzing plant metabolic and regulatory pathways. In addition to ∼ 200 curated rice reference pathways, the portal hosts gene homology-based pathway projections for 33 plant species. Both the genome and pathway browsers interface with the EMBL-EBI's Expression Atlas to enable the projection of baseline and differential expression data from curated expression studies in plants. Gramene's archive website (http://archive.gramene.org) continues to provide previously reported resources on comparative maps, markers and QTL. To further aid our users, we have also introduced a live monthly educational webinar series and a Gramene YouTube channel carrying video tutorials.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Plantas/metabolismo , Expressão Gênica , Variação Genética , Genômica , Internet , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Plantas/genética
6.
Plant Cell Physiol ; 56(1): e3, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25432969

RESUMO

Recent developments in DNA sequencing have enabled the large and complex genomes of many crop species to be determined for the first time, even those previously intractable due to their polyploid nature. Indeed, over the course of the last 2 years, the genome sequences of several commercially important cereals, notably barley and bread wheat, have become available, as well as those of related wild species. While still incomplete, comparison with other, more completely assembled species suggests that coverage of genic regions is likely to be high. Ensembl Plants (http://plants.ensembl.org) is an integrative resource organizing, analyzing and visualizing genome-scale information for important crop and model plants. Available data include reference genome sequence, variant loci, gene models and functional annotation. For variant loci, individual and population genotypes, linkage information and, where available, phenotypic information are shown. Comparative analyses are performed on DNA and protein sequence alignments. The resulting genome alignments and gene trees, representing the implied evolutionary history of the gene family, are made available for visualization and analysis. Driven by the case of bread wheat, specific extensions to the analysis pipelines and web interface have recently been developed to support polyploid genomes. Data in Ensembl Plants is accessible through a genome browser incorporating various specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These interfaces are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests and pollinators, facilitating the study of the plant in its environment.


Assuntos
Genoma de Planta/genética , Genômica , Hordeum/genética , Transcriptoma , Triticum/genética , Grão Comestível/genética , Variação Genética , Genótipo , Armazenamento e Recuperação da Informação , Internet , Interface Usuário-Computador
7.
PLoS One ; 9(5): e96855, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24821410

RESUMO

BACKGROUND: Triticum monococcum (2n) is a close ancestor of T. urartu, the A-genome progenitor of cultivated hexaploid wheat, and is therefore a useful model for the study of components regulating photomorphogenesis in diploid wheat. In order to develop genetic and genomic resources for such a study, we constructed genome-wide transcriptomes of two Triticum monococcum subspecies, the wild winter wheat T. monococcum ssp. aegilopoides (accession G3116) and the domesticated spring wheat T. monococcum ssp. monococcum (accession DV92) by generating de novo assemblies of RNA-Seq data derived from both etiolated and green seedlings. PRINCIPAL FINDINGS: The de novo transcriptome assemblies of DV92 and G3116 represent 120,911 and 117,969 transcripts, respectively. We successfully mapped ∼90% of these transcripts from each accession to barley and ∼95% of the transcripts to T. urartu genomes. However, only ∼77% transcripts mapped to the annotated barley genes and ∼85% transcripts mapped to the annotated T. urartu genes. Differential gene expression analyses revealed 22% more light up-regulated and 35% more light down-regulated transcripts in the G3116 transcriptome compared to DV92. The DV92 and G3116 mRNA sequence reads aligned against the reference barley genome led to the identification of ∼500,000 single nucleotide polymorphism (SNP) and ∼22,000 simple sequence repeat (SSR) sites. CONCLUSIONS: De novo transcriptome assemblies of two accessions of the diploid wheat T. monococcum provide new empirical transcriptome references for improving Triticeae genome annotations, and insights into transcriptional programming during photomorphogenesis. The SNP and SSR sites identified in our analysis provide additional resources for the development of molecular markers.


Assuntos
Diploide , Transcriptoma/genética , Triticum/genética , Genoma de Planta/genética , Plântula/genética
8.
Med Mycol ; 52(5): 472-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24847037

RESUMO

The epidemiology of Candida parapsilosis and the closely related species C. orthopsilosis and C. metapsilosis has changed in recent years, justify the need to identify this complex at the species level. In this study we investigate the intergenic spacer 1 (IGS1) of the ribosomal DNA (rDNA) to evaluate the utility of this gene region as a phylogenetic molecular marker and the suitability of a high-resolution melting (HRM) strategy based on this region for identification of members of the C. parapsilosis spp. complex. We sequenced the IGS1 and the internal transcribed spacer (ITS) regions of the rDNA from 33 C. parapsilosis sensu lato strains. Although both regions are useful in identifying species, comparative sequence analysis showed that the diversity in the IGS1 region was higher than in the ITS sequences. We also developed an HRM analysis that reliably identifies C. parapsilosis spp. complex based on the amplification of 70 bp in the IGS1 region. All isolates were correctly identified with a confidence interval >98%. Our results demonstrate that HRM analysis based on the IGS1 region is a powerful tool for distinguishing C. parapsilosis from cryptic species.


Assuntos
Candida/isolamento & purificação , Candidíase/microbiologia , DNA Espaçador Ribossômico/genética , Técnicas de Tipagem Micológica/métodos , Sequência de Bases , Candida/classificação , Candida/genética , Candidíase/diagnóstico , Intervalos de Confiança , Primers do DNA/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , Marcadores Genéticos , Humanos , Dados de Sequência Molecular , Técnicas de Tipagem Micológica/economia , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
9.
Nucleic Acids Res ; 42(Database issue): D1193-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24217918

RESUMO

Gramene (http://www.gramene.org) is a curated online resource for comparative functional genomics in crops and model plant species, currently hosting 27 fully and 10 partially sequenced reference genomes in its build number 38. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. Whole-genome alignments complemented by phylogenetic gene family trees help infer syntenic and orthologous relationships. Genetic variation data, sequences and genome mappings available for 10 species, including Arabidopsis, rice and maize, help infer putative variant effects on genes and transcripts. The pathways section also hosts 10 species-specific metabolic pathways databases developed in-house or by our collaborators using Pathway Tools software, which facilitates searches for pathway, reaction and metabolite annotations, and allows analyses of user-defined expression datasets. Recently, we released a Plant Reactome portal featuring 133 curated rice pathways. This portal will be expanded for Arabidopsis, maize and other plant species. We continue to provide genetic and QTL maps and marker datasets developed by crop researchers. The project provides a unique community platform to support scientific research in plant genomics including studies in evolution, genetics, plant breeding, molecular biology, biochemistry and systems biology.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Genômica , Produtos Agrícolas/genética , Variação Genética , Internet , Redes e Vias Metabólicas/genética , Anotação de Sequência Molecular , Plantas/genética , Plantas/metabolismo
10.
Nucleic Acids Res ; 42(Database issue): D546-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163254

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species. The project exploits and extends technologies for genome annotation, analysis and dissemination, developed in the context of the vertebrate-focused Ensembl project, and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. This article provides an update to the previous publications about the resource, with a focus on recent developments. These include the addition of important new genomes (and related data sets) including crop plants, vectors of human disease and eukaryotic pathogens. In addition, the resource has scaled up its representation of bacterial genomes, and now includes the genomes of over 9000 bacteria. Specific extensions to the web and programmatic interfaces have been developed to support users in navigating these large data sets. Looking forward, analytic tools to allow targeted selection of data for visualization and download are likely to become increasingly important in future as the number of available genomes increases within all domains of life, and some of the challenges faced in representing bacterial data are likely to become commonplace for eukaryotes in future.


Assuntos
Bases de Dados Genéticas , Genoma , Animais , Grão Comestível/genética , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Genômica , Internet , Anotação de Sequência Molecular , Software
11.
Nature ; 491(7426): 705-10, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23192148

RESUMO

Bread wheat (Triticum aestivum) is a globally important crop, accounting for 20 per cent of the calories consumed by humans. Major efforts are underway worldwide to increase wheat production by extending genetic diversity and analysing key traits, and genomic resources can accelerate progress. But so far the very large size and polyploid complexity of the bread wheat genome have been substantial barriers to genome analysis. Here we report the sequencing of its large, 17-gigabase-pair, hexaploid genome using 454 pyrosequencing, and comparison of this with the sequences of diploid ancestral and progenitor genomes. We identified between 94,000 and 96,000 genes, and assigned two-thirds to the three component genomes (A, B and D) of hexaploid wheat. High-resolution synteny maps identified many small disruptions to conserved gene order. We show that the hexaploid genome is highly dynamic, with significant loss of gene family members on polyploidization and domestication, and an abundance of gene fragments. Several classes of genes involved in energy harvesting, metabolism and growth are among expanded gene families that could be associated with crop productivity. Our analyses, coupled with the identification of extensive genetic variation, provide a resource for accelerating gene discovery and improving this major crop.


Assuntos
Pão , Genoma de Planta/genética , Triticum/genética , Brachypodium/genética , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , DNA Complementar/genética , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas/genética , Genômica , Família Multigênica/genética , Oryza/genética , Polimorfismo de Nucleotídeo Único/genética , Poliploidia , Pseudogenes/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Triticum/classificação , Zea mays/genética
12.
Nucleic Acids Res ; 40(Database issue): D91-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22067447

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrative resource for genome-scale data from non-vertebrate species. The project exploits and extends technology (for genome annotation, analysis and dissemination) developed in the context of the (vertebrate-focused) Ensembl project and provides a complementary set of resources for non-vertebrate species through a consistent set of programmatic and interactive interfaces. These provide access to data including reference sequence, gene models, transcriptional data, polymorphisms and comparative analysis. Since its launch in 2009, Ensembl Genomes has undergone rapid expansion, with the goal of providing coverage of all major experimental organisms, and additionally including taxonomic reference points to provide the evolutionary context in which genes can be understood. Against the backdrop of a continuing increase in genome sequencing activities in all parts of the tree of life, we seek to work, wherever possible, with the communities actively generating and using data, and are participants in a growing range of collaborations involved in the annotation and analysis of genomes.


Assuntos
Bases de Dados Genéticas , Genômica , Animais , Genoma , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Invertebrados/genética , Anotação de Sequência Molecular , Integração de Sistemas
13.
Database (Oxford) ; 2011: bar030, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21785142

RESUMO

For a number of years the BioMart data warehousing system has proven to be a valuable resource for scientists seeking a fast and versatile means of accessing the growing volume of genomic data provided by the Ensembl project. The launch of the Ensembl Genomes project in 2009 complemented the Ensembl project by utilizing the same visualization, interactive and programming tools to provide users with a means for accessing genome data from a further five domains: protists, bacteria, metazoa, plants and fungi. The Ensembl and Ensembl Genomes BioMarts provide a point of access to the high-quality gene annotation, variation data, functional and regulatory annotation and evolutionary relationships from genomes spanning the taxonomic space. This article aims to give a comprehensive overview of the Ensembl and Ensembl Genomes BioMarts as well as some useful examples and a description of current data content and future objectives. Database URLs: http://www.ensembl.org/biomart/martview/; http://metazoa.ensembl.org/biomart/martview/; http://plants.ensembl.org/biomart/martview/; http://protists.ensembl.org/biomart/martview/; http://fungi.ensembl.org/biomart/martview/; http://bacteria.ensembl.org/biomart/martview/.


Assuntos
Classificação/métodos , Bases de Dados Genéticas , Armazenamento e Recuperação da Informação/métodos , Animais , Anopheles/genética , Biologia Computacional , Genoma/genética , Humanos , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Ferramenta de Busca
14.
J Biomed Semantics ; 1(1): 8, 2010 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-20727200

RESUMO

Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies.

15.
Genome Biol ; 9(4): R74, 2008 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-18419807

RESUMO

BACKGROUND: Stenotrophomonas maltophilia is a nosocomial opportunistic pathogen of the Xanthomonadaceae. The organism has been isolated from both clinical and soil environments in addition to the sputum of cystic fibrosis patients and the immunocompromised. Whilst relatively distant phylogenetically, the closest sequenced relatives of S. maltophilia are the plant pathogenic xanthomonads. RESULTS: The genome of the bacteremia-associated isolate S. maltophilia K279a is 4,851,126 bp and of high G+C content. The sequence reveals an organism with a remarkable capacity for drug and heavy metal resistance. In addition to a number of genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, nine resistance-nodulation-division (RND)-type putative antimicrobial efflux systems are present. Functional genomic analysis confirms a role in drug resistance for several of the novel RND efflux pumps. S. maltophilia possesses potentially mobile regions of DNA and encodes a number of pili and fimbriae likely to be involved in adhesion and biofilm formation that may also contribute to increased antimicrobial drug resistance. CONCLUSION: The panoply of antimicrobial drug resistance genes and mobile genetic elements found suggests that the organism can act as a reservoir of antimicrobial drug resistance determinants in a clinical environment, which is an issue of considerable concern.


Assuntos
Resistência Microbiana a Medicamentos/genética , Genoma Bacteriano , Stenotrophomonas maltophilia/genética , Metais Pesados/toxicidade , Stenotrophomonas maltophilia/fisiologia
16.
Brief Bioinform ; 9(3): 220-31, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18238804

RESUMO

The BioMoby project was initiated in 2001 from within the model organism database community. It aimed to standardize methodologies to facilitate information exchange and access to analytical resources, using a consensus driven approach. Six years later, the BioMoby development community is pleased to announce the release of the 1.0 version of the interoperability framework, registry Application Programming Interface and supporting Perl and Java code-bases. Together, these provide interoperable access to over 1400 bioinformatics resources worldwide through the BioMoby platform, and this number continues to grow. Here we highlight and discuss the features of BioMoby that make it distinct from other Semantic Web Service and interoperability initiatives, and that have been instrumental to its deployment and use by a wide community of bioinformatics service providers. The standard, client software, and supporting code libraries are all freely available at http://www.biomoby.org/.


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Internet , Linguagens de Programação , Integração de Sistemas
18.
Nat Genet ; 39(7): 839-47, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17572675

RESUMO

Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only approximately 200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader-associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage.


Assuntos
Genoma , Genômica , Leishmania/genética , Leishmaniose/parasitologia , Sequência de Aminoácidos , Animais , Humanos , Leishmania braziliensis/genética , Leishmania infantum/genética , Leishmania major/genética , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Dados de Sequência Molecular
19.
Bioinformatics ; 23(14): 1831-3, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17496321

RESUMO

UNLABELLED: Here we present a computational protocol to analyze the promoter regions of a given set of co-expressed genes, and its implementation through the use of Web services technologies. This protocol aims to cluster a set of co-regulated genes in subsets of genes showing similar configurations of transcription factor binding sites. All the steps of this protocol have been developed as web services that are compliant with BioMoby specifications. AVAILABILITY: {http://genome.imim.es/cgi-bin/moby/GeneClustering_DataSubmission.cgi}. SUPPLEMENTARY INFORMATION: Supplementary data are available at {http://genome.imim.es/webservices/}


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Algoritmos , Automação , Sítios de Ligação , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Internet , Modelos Genéticos , Software , Fatores de Transcrição/metabolismo
20.
Genome Res ; 17(3): 311-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17284678

RESUMO

Eimeria tenella is an intracellular protozoan parasite that infects the intestinal tracts of domestic fowl and causes coccidiosis, a serious and sometimes lethal enteritis. Eimeria falls in the same phylum (Apicomplexa) as several human and animal parasites such as Cryptosporidium, Toxoplasma, and the malaria parasite, Plasmodium. Here we report the sequencing and analysis of the first chromosome of E. tenella, a chromosome believed to carry loci associated with drug resistance and known to differ between virulent and attenuated strains of the parasite. The chromosome--which appears to be representative of the genome--is gene-dense and rich in simple-sequence repeats, many of which appear to give rise to repetitive amino acid tracts in the predicted proteins. Most striking is the segmentation of the chromosome into repeat-rich regions peppered with transposon-like elements and telomere-like repeats, alternating with repeat-free regions. Predicted genes differ in character between the two types of segment, and the repeat-rich regions appear to be associated with strain-to-strain variation.


Assuntos
Estruturas Cromossômicas/genética , Eimeria tenella/genética , Genes de Protozoários/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , Biologia Computacional , Repetições Minissatélites/genética , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...