Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; : e202400314, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630012

RESUMO

Dissociative electron transfer in collisions between neutral potassium atoms and neutral ethanol molecules yields mainly OH-, followed by C2H5O-, O-, CH3 - and CH2 -. The dynamics of negative ions have been investigated by recording time-of-flight mass spectra in a wide range of collision energies from 17.5 to 350 eV in the lab frame, where the branching ratios show a relevant energy dependence for low/intermediate collision energies. The dominant fragmentation channel in the whole energy range investigated has been assigned to the hydroxyl anion in contrast to oxygen anion from dissociative electron attachment (DEA) experiments. This result shows the relevant role of the electron donor in the vicinity of the temporary negative ion formed allowing access to reactions which are not thermodynamically attained in DEA experiments. The electronic state spectroscopy of such negative ions, was obtained from potassium cation energy loss spectra in the forward scattering direction at 205 eV impact energy, showing a prevalent Feshbach resonance at 9.36±0.10 eV with σ O H * / σ C H * ${{\sigma }_{OH}^{^{\ast}}/{\sigma }_{CH}^{^{\ast}}}$ character, while a less pronounced σ O H * ${{\sigma }_{OH}^{^{\ast}}}$ contribution assigned to a shape resonance has been obtained at 3.16±0.10 eV. Quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom have been performed to support the experimental findings.

3.
J Phys Chem Lett ; 14(23): 5362-5369, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276433

RESUMO

H2O/D2O negative ion time-of-flight mass spectra from electron transfer processes at different collision energies with neutral potassium yield OH-/OD-, O-, and H-/D-. The branching ratios show a relevant energy dependence with an important isotope effect in D2O. Electronic state spectroscopy of water has been further investigated by recording potassium cation energy loss spectra in the forward scattering direction at an impact energy of 205 eV (lab frame), with quantum chemical calculations for the lowest-lying unoccupied molecular orbitals in the presence of a potassium atom supporting most of the experimental findings. The DO-D bond dissociation energy has been determined for the first time to be 5.41 ± 0.10 eV. The collision dynamics revealed the character of the singly excited (1b2-1) molecular orbital and doubly excited states in such K-H2O and K-D2O collisions.

4.
J Phys Chem A ; 127(25): 5382-5389, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37319370

RESUMO

A recent suggestion that acetamide, CH3C(O)NH2, could be readily formed on water-ice grains by the acid induced addition of water across the C≡N bond has now been shown to be credible. Computational modeling of the reaction between R-CN (R = H, CH3) and a cluster of 32 molecules of water and one H3O+ proceeds catalytically to form first a hydroxy imine R-C(OH)═NH and second an amide R-C(O)NH2. Quantum mechanical tunneling, computed from small-curvature estimates, plays a key role in the rates of these reactions. This work represents the first reasonable effort to show, in general, how amides can be formed from nitriles and water, which are abundant substrates, reacting on a water-ice cluster containing catalytic amounts of hydrons in the interstellar medium with consequential implications toward the origins of life.

5.
RSC Adv ; 12(29): 18994-19005, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35873325

RESUMO

Acetaldehyde (CH3CHO) is ubiquitous in interstellar space and is important for astrochemistry as it can contribute to the formation of amino acids through reaction with nitrogen containing chemical species. Quantum chemical and reaction kinetics studies are reported for acetaldehyde formation from the chemical reaction of C(3P) with a methanol molecule adsorbed at the eighth position of a cubic water cluster. We present extensive quantum chemical calculations for total spin S = 1 and S = 0. The UωB97XD/6-311++G(2d,p) model chemistry is employed to optimize the structures, compute minimum energy paths and zero-point vibrational energies of all reaction steps. For the optimized structures, the calculated energies are refined by CCSD(T) single point computations. We identify four transition states on the triplet potential energy surface (PES), and one on the singlet PES. The reaction mechanism involves the intermediate formation of CH3OCH adsorbed on the ice cluster. The rate limiting step for forming acetaldehyde is the C-O bond breaking in CH3OCH to form adsorbed CH3 and HCO. We find two positions on the reaction path where spin crossing may be possible such that acetaldehyde can form in its singlet spin state. Using variational transition-state theory with multidimensional tunnelling we provide thermal rate constants for the energetically rate limiting step for both spin states and discuss two routes to acetaldehyde formation. As expected, quantum effects are important at low temperatures.

6.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807379

RESUMO

This novel work reports nimorazole (NIMO) radiosensitizer reduction upon electron transfer in collisions with neutral potassium (K) atoms in the lab frame energy range of 10-400 eV. The negative ions formed in this energy range were time-of-flight mass analyzed and branching ratios were obtained. Assignment of different anions showed that more than 80% was due to the formation of the non-dissociated parent anion NIMO•- at 226 u and nitrogen dioxide anion NO2- at 46 u. The rich fragmentation pattern revealed that significant collision induced the decomposition of the 4-nitroimidazole ring, as well as other complex internal reactions within the temporary negative ion formed after electron transfer to neutral NIMO. Other fragment anions were only responsible for less than 20% of the total ion yield. Additional information on the electronic state spectroscopy of nimorazole was obtained by recording a K+ energy loss spectrum in the forward scattering direction (θ ≈ 0°), allowing us to determine the most accessible electronic states within the temporary negative ion. Quantum chemical calculations on the electronic structure of NIMO in the presence of a potassium atom were performed to help assign the most significant lowest unoccupied molecular orbitals participating in the collision process. Electron transfer was shown to be a relevant process for nimorazole radiosensitisation through efficient and prevalent non-dissociated parent anion formation.


Assuntos
Elétrons , Nimorazol , Ânions , Transporte de Elétrons , Íons , Potássio/química
7.
J Phys Chem A ; 126(7): 1076-1084, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35143199

RESUMO

In this contribution, we report a novel comprehensive investigation on negative ion formation from electron transfer processes mediated by neutral potassium atom collisions with neutral methanol molecules employing experimental and theoretical methodologies. Methanol collision-induced fragmentation yielding anion formation has been obtained by time-of-flight mass spectrometry in the wide energy range of 19 to 275 eV in the lab frame. The negative ions formed in such a collision process have been assigned to CH3O-, OH-, and O-, with a strong energy dependence especially at lower collision energies. The most intense fragment anions in the whole energy range investigated have been assigned to OH- and CH3O-. Additionally, the potassium cation energy loss spectrum in the forward scattering direction at 205 eV impact energy has revealed several features, where the two main electronic states accessible during the collision events have vertical electron affinities of -8.26 ± 0.20 and -10.36 ± 0.2 eV. Quantum chemical calculations have been performed for the lowest-lying unoccupied molecular orbitals of methanol in the presence of a potassium atom, lending strong support to the experimental findings.

8.
Phys Chem Chem Phys ; 24(2): 778-785, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908053

RESUMO

Nanoscale titanium carbide (TiC) is widely used in composites and energy applications. In order to design and optimize these systems and to gain a fundamental understanding of these nanomaterials, it is important to understand the atomistic structure of nano-TiC. Cluster beam experiments have provided detailed infrared vibrational spectra of numerous TixCy nanoparticles with well defined masses. However, these spectra have yet to be convincingly assigned to TixCy nanoparticle structures. Herein, using accurate density functional theory based calculations, we perform a systematic survey of likely candidate nanoparticle structures with masses corresponding to those in experiment. We calculate harmonic infrared vibrational spectra for a range of nanoparticles up to 100 atoms in size, with a focus on systems based on removing either four carbon atoms or a single titanium atom from rocksalt-structured stoichiometric TiC nanoparticles. Our calculations clearly show that Ti-deficient nanoparticles are unlikely candidates to explain the experimental spectra as such structures are highly susceptible to C-C bonding, whose characteristic frequencies are not observed in experiment. However, our calculated infrared spectra for C-deficient nanoparticles have some matching features with the experimental spectra but tend to have more complex infrared spectra with more peaks than those obtained from experiment. We suggest that the discrepancy between experiment and theory may be largely due to thermally induced anharmonicities and broadening in the latter nanoparticles, which are not be accounted for in harmonic vibrational calculations.

9.
J Phys Chem A ; 124(5): 1003-1010, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935089

RESUMO

The behavior of potential prebiotic species in space is of main concern in the chemistry at the origin of life. Their reactivity or stability in spatial conditions, under strong UV radiations or ion bombardments, remains an open question and needs wide investigations. As protons are by far the most abundant ions in space, we focus presently on proton-induced collisions on imidazole and 2-aminoimidazole evidenced as important prebiotic RNA intermediates. Unconstrained full optimization of the structures was performed with B3LYP/cc-pVTZ model chemistry. The calculations were performed in a wide collision energy range in order to model various astrophysical environments, from eV in the interstellar medium, up to keV for solar winds or supernovae shock-wave protons. Such a study provides for the first time a theoretical insight on the influence of the amino substituent on the proton-induced charge transfer. We evaluated the role of icy grain environments through a cluster approach modeling the effect of a stepwise microhydration on the process. Comparisons with oxygenated and sulfurated analogues address further qualitative trends on the respective stability or reactivity of such heterocycles which may be of tremendous interest in prebiotic chemistry. Charge transfer appears to be quite efficient for imidazole compounds and their sulfurated analogue compared to the oxygenated heterocycle.


Assuntos
Imidazóis/química , Prótons , Água/química , Teoria da Densidade Funcional , Modelos Químicos , Estrutura Molecular , Eletricidade Estática
10.
Phys Chem Chem Phys ; 21(42): 23375-23384, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31631201

RESUMO

Recent detection of propyl cyanide (C3H7CN) with both linear and branched structures has stimulated many experimental and theoretical studies. In this theoretical work, we present the spectroscopic properties of the far infrared spectra of these species and we investigate their different paths of formation in the gas phase. Our spectroscopic study concerns the far infrared spectra of iso, anti and gauche propyl cyanide isomers. The equilibrium structures and the potential energy surfaces are calculated using explicitly correlated cluster ab initio methods (CCSD(T)-F12) and a variational procedure designed for non-rigid species and large amplitude motions. Accurate rotational constants, centrifugal distortion constants, potential energy barriers and surfaces are provided. The rovibrational parameters in the ground vibrational states compare very well with experimental data. The low energy vibrational levels correspond to torsional modes. Far infrared energies are calculated up to 500 cm-1 using the variational approach and the vibrational second order theory (VPT2), and a good agreement with previous experimental values is found. We have also investigated the gas phase formation of the different C3H7CN isomers. After several trials of reacting gaseous species, we considered that a possible formation route of the C3H7CN isomers can be from the bimolecular reaction of HCN with propene. At the UMP2(full)/aug-cc-pVTZ level of theory, this reaction involves two steps for each isomer; the first one corresponds to the association of the two radicals while the second one corresponds to H transfer. From highly correlated ab initio calculations by means of CCSD(T)/aug-cc-pVTZ//UMP2(full)/aug-cc-pVTZ, the geometries, energetics and minimum energy paths of the reactions are obtained. Also, the first step's transition state disappears, as the diradical minimum is much less stabilized with UCCSD(T) than by UMP2(full). We employ the zero curvature tunneling and canonical variational (CVT/ZCT) semiclassical method to predict rate constants for propyl cyanide isomers formation in the gas phase. However, due to the presence of a significant barrier, this reaction leads to very small rate constants. Very recently, we probed reaction mechanisms involving radical addition and we found that these reactions are barrierless and highly exothermic leading to expected fast reactive processes for the formation of propyl cyanide products. The kinetics of such diradical reactions is under study.

11.
J Phys Chem A ; 123(43): 9282-9291, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31584814

RESUMO

The rate constants of H2 formation on five models of silicate nanoclusters with varying degrees of hydroxylation, (Mg4Si4O12)(H2O)N, were computed over a wide temperature range [180-2000 K]. We tested nine combinations of density functional methods and basis sets for their suitability for calculating reaction energies and barrier heights, and we computed the minimum energy H + H → H2 reaction paths on each nanocluster. Subsequently, we computed the rate constants employing three semiclassical approaches that take into account tunneling and nonclassical reflection effects by means of the zero curvature tunneling (ZCT), the small curvature tunneling (SCT), and the one-dimensional semiclassical transition state theory (SCTST) methods, which all provided comparable results. Our investigations show that the H2 formation process following the Langmuir-Hinshelwood (LH) mechanism is more efficient on the hydroxylated (N = 1-4) nanoclusters than on the bare (N = 0) one due to relatively higher reaction barrier height on the latter. H2 formation is found to have the smallest barrier and the most exothermic reaction for the moderately hydroxylated (Mg4Si4O12)(H2O)2 nanocluster for all nine considered methods. Overall, we conclude that all the considered nanoclusters are very efficient catalyzing grains for H2 formation in the physical conditions of the interstellar medium (ISM) with pyroxene nanosilicates having moderate to high hydroxylation being more efficient than bare nanograins.

12.
J Mol Model ; 22(12): 301, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27913928

RESUMO

A quantum chemistry study of mononuclear metal coordination with four 4-methylimidazole ligands (4-MeIm) was investigated. The four complexes [Cu(4-MeIm)4]2+, [Cu(4-MeIm)4, H2O]2+, [Zn(4-MeIm)4]2+ and [Zn(4-MeIm)4, H2O]2+ were studied with particular attention to the Nπ or Nτ possible coordinations of the 4-MeIm ring with the metals, using different DFT methods. The results suggest that the Nτ coordination of 4-MeIm ring to ZnII or CuII is more favorable whatever the level of calculation. In contrast, the addition of one water molecule in the first coordination sphere of the metal ions provides five-coordinated complexes showing no Nπ or Nτ preferences. There is good agreement between the DFT-calculated structure and those available experimentally. When metal ions are four-fold coordinated, they adopt a tetrahedral geometry. When CuII and ZnII are five-fold coordinated, highly symmetric structures or intermediate structures are calculated. Similar energies are calculated for different structures, suggesting flat potential energy surfaces. The addition of implicit solvent modifies the calculated first coordination sphere, especially for [Cu(4-MeIm)4, H2O]2+ structures. The QTAIM and ELF topological analyses of the interaction between CuII and the neutral ligands, clearly indicate a dative bonding with a strong ionic character.

13.
J Chem Phys ; 143(11): 114304, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26395702

RESUMO

The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.

14.
Phys Chem Chem Phys ; 17(14): 8951-63, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25746007

RESUMO

We study nanoclusters of Mg-rich olivine and pyroxene (having (MgO)6(SiO2)3 and (MgO)4(SiO2)4 compositions) with respect to their reactivity towards hydrogen atoms, using density functional calculations. Ultrasmall silicate particles are fundamental intermediates in cosmic dust grain formation and processing, and are thought to make up a significant mass fraction of the grain population. Due to their nanoscale dimensions and high surface area to bulk ratios, they are likely to also have a disproportionately large influence on surface chemistry in the interstellar medium. This work investigates the potential role of silicate nanoclusters in vital interstellar hydrogen-based chemistry by studying atomic H adsorption and H2 formation. Our extensive set of calculations confirm the generality of a Brønsted-Evans-Polanyi (BEP) relation between the H2 reaction barrier and the 2Hchem binding energy, suggesting it to be independent of silicate dust grain shape, size, crystallinity and composition. Our results also suggest that amorphous/porous grains with forsteritic composition would tend to dissociate H2, but relatively Mg-poor silicate grains (e.g. enstatite composition) and/or more crystalline/compact silicate grains would tend to catalyse H2 formation. The high structural thermostability of silicate nanoclusters with respect to the heat released during exothermic H2 formation reactions is also verified.

15.
J Chem Phys ; 136(14): 144901, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22502544

RESUMO

Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration R(G) for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

16.
Inorg Chem ; 47(17): 7453-5, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18665586

RESUMO

Ultraviolet (UV) photolysis of (mu-S(CH 2) 3S)Fe 2(CO) 6 ( 1), a model compound of the Fe-hydrogenase enzyme system, has been carried out. When ultrafast UV-pump infrared (IR)-probe spectroscopy, steady-state Fourier transform IR spectroscopic methods, and density functional theory simulations are employed, it has been determined that irradiation of 1 in an alkane solution at 350 nm leads to the formation of two isomers of the 16-electron complex (mu-S(CH 2) 3S)Fe 2(CO) 5 within 50 ps with evidence of a weakly associated solvent adduct complex. 1 is subsequently recovered on timescales covering several minutes. These studies constitute the first attempt to study the photochemistry and reactivity of these enzyme active site models in solution following carbonyl ligand photolysis.


Assuntos
Hidrogenase/química , Compostos de Ferro/química , Proteínas Ferro-Enxofre/química , Sulfetos/química , Domínio Catalítico , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Fotoquímica , Fotólise , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
17.
Phys Chem Chem Phys ; 8(8): 917-25, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16482334

RESUMO

A practical quantum-dynamical method is described for predicting accurate rate constants for general chemical reactions. The ab initio potential energy surfaces for these reactions can be built from a minimal number of grid points (average of 50 points) and expressed in terms of analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimised using the MP2 method with a cc-pVTZ basis set. Single point energies are calculated on the optimised geometries at the CCSD(T) level of theory with the same basis set. The dynamics of these reactions occur on effective reduced dimensionality hyper-surfaces accounting for the zero-point energy of the optimised degrees of freedom. Bonds being broken and formed are treated with explicit hyperspherical time independent quantum dynamics. Application of the method to the H + CH(4)--> H(2)+ CH(3), H + C(2)H(6)--> H(2)+ C(2)H(5), H + C(3)H(8)--> H(2)+n-C(3)H(7)/H(2)+i-C(3)H(7) and H + CH(3)OH --> H(2)+ CH(3)O/H(2)+ CH(2)OH reactions illustrate the potential of the approach in predicting rate constants, kinetic isotope effects and branching ratios. All studied reactions exhibit large quantum tunneling in the rate constants at lower temperatures. These quantum calculations compare well with the experimental results.


Assuntos
Hidrocarbonetos/química , Hidrogênio/química , Algoritmos , Fenômenos Biofísicos , Biofísica , Cinética , Prótons , Teoria Quântica , Termodinâmica
18.
J Chem Phys ; 123(6): 64305, 2005 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16122306

RESUMO

We present a three-dimensional quantum scattering model to treat reactions of the type H + C2H6 --> H2 + C2H5. The model allows the torsional and the stretching degrees of freedom to be treated explicitly. Zero-point energies of the remaining modes are taken into account in electronic structure calculations. An analytical potential-energy surface was developed from a minimal number of ab initio geometry evaluations using the CCSD(T,full)/cc-pVTZ//MP2(full)/cc-pVTZ level of theory. The reaction is endothermic by 1.5 kcal mol(-1) and exhibits a vibrationally adiabatic barrier of 12.0 kcal mol(-1). The results show that the torsional mode influences reactivity when coupled with the vibrational C-H stretching mode. We also found that ethyl radical products are formed internally excited in the torsional mode.

19.
J Chem Phys ; 121(14): 6809-21, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15473738

RESUMO

The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.

20.
J Chem Phys ; 120(5): 2308-18, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15268369

RESUMO

A general and practical procedure is described for calculating rate constants for chemical reactions using a minimal number of ab initio calculations and quantum-dynamical computations. The method exploits a smooth interpolating functional developed in the hyperspherical representation. This functional is built from two Morse functions and depends on a relatively small number of parameters with respect to conventional functionals developed to date. Thus only a small number of ab initio points needs to be computed. The method is applied to the H + CH4 --> H2 + CH3 reaction. The quantum scattering calculations are performed treating explicitly the bonds being broken and formed. All the degrees of freedom except the breaking and forming bonds are optimized ab initio and harmonic vibrational frequencies and zero-point energies for them are calculated at the MP2(full) level with a cc-pVTZ basis set. Single point energies are calculated at a higher level of theory with the same basis set, namely CCSD(T, full). We report state-to-state cross sections and thermal rate constants for the title reaction and make comparisons with previous results. The calculated rate constants are in good agreement with experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...