Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771092

RESUMO

In the framework of wastewater treatment plants, sewage sludge can be directed to biochar production, which when coupled with an external iron source has the potential to be used as a carbon-iron composite material for treating various organic pollutants in advanced oxidation processes. In this research, "green" synthesized nano zero-valent iron (nZVI) supported on sewage sludge-based biochar (BC)-nZVI-BC was used in the Fenton process for the degradation of the recalcitrant organic molecule. In this way, the circular economy principles were supported within wastewater treatment with immediate loop closing; unlike previous papers, where only the water treatment was assessed, the authors proposed a new approach to wastewater treatment, combining solutions for both water and sludge. The following phases were implemented: synthesis and characterization of nano zero-valent iron supported on sewage sludge-based biochar (nZVI-BC); optimization of organic pollutant removal (Reactive Blue 4 as the model pollutant) by nZVI-BC in the Fenton process, using a Definitive Screening Design (DSD) model; reuse of the obtained Fenton sludge, as an additional catalytic material, under previously optimized conditions; and assessment of the exhausted Fenton sludge's ability to be used as a source of nutrients. nZVI-BC was used in the Fenton treatment for the degradation of Reactive Blue 4-a model substance containing a complex and stable anthraquinone structure. The DSD model proposes a high dye-removal efficiency of 95.02% under the following optimal conditions: [RB4] = 50 mg/L, [nZVI] = 200 mg/L, [H2O2] = 10 mM. pH correction was not performed (pH = 3.2). Afterwards, the remaining Fenton sludge, which was thermally treated (named FStreated), was applied as a heterogeneous catalyst under the same optimal conditions with a near-complete organic molecule degradation (99.56% ± 0.15). It could be clearly noticed that the cumulative amount of released nutrients significantly increased with the number of leaching experiments. The highest cumulative amounts of released K, Ca, Mg, Na, and P were therefore observed at the fifth leaching cycle (6.40, 1.66, 1.12, 0.62, 0.48 and 58.2 mg/g, respectively). According to the nutrient release and toxic metal content, FStreated proved to be viable for agricultural applications; these findings illustrated that the "green" synthesis of nZVI-BC not only provides innovative and efficient Fenton catalysts, but also constitutes a novel approach for the utilization of sewage sludge, supporting overall process sustainability.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Ferro/química , Esgotos , Peróxido de Hidrogênio , Poluentes Químicos da Água/química , Carvão Vegetal
2.
Environ Technol ; : 1-20, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36448931

RESUMO

The main challenges to overcome within the Fenton process are the acidic pH as an optimal reaction condition, sludge formation in neutral pH medium and high toxicity of treated printing wastewater due to the generation of contaminating by-products. This research discusses the catalytic activity of homogeneous (FeSO4/H2O2) and heterogeneous (Fe2(MoO4)3/H2O2) Fenton processes in treatment of Yellow azo printing dye in synthetic aqueous solution and real printing effluent, with an integration of adsorption on functionalized biochar synthesized from wild plum kernels. The definitive screening design (DSD), was used to design the experiment. Independent variables were initial dye concentration (20-180 mg L-1), iron concentration (0.75-60 mg L-1), pH (2-10) and hydrogen peroxide concentration (1-11 mM). Higher decolourization efficiency of 79% was obtained within homogeneous Fenton treatment of printing wastewater, in comparison to heterogeneous Fenton treatment (54%), after a reaction time of 60 min. Same trend of mineralization degree was established: COD removal was 59% and 33% for homogeneous and heterogeneous Fenton process, respectively. The application of adsorption treatment has achieved significant advantages in terms of toxicity reduction (95%) and decolourization efficiency (90% of TOC removal and 22% of dye removal) of treated samples, even at neutral pH medium. Degradation mechanisms within Fenton and adsorption processes were proposed based on the qualitative gas chromatography/mass spectrometry analysis, physico-chemical properties of dye degradation products and functionalized biochar. Overall, the homogeneous Fenton/adsorption combined process can be potentially used as a treatment to remove azo dyes from contaminated water.

3.
Recent Pat Nanotechnol ; 15(3): 270-294, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596815

RESUMO

BACKGROUND: In past years, nanomaterials have been actively studied and developed and successfully used in many fields. Due to water scarcity, the application of nanomaterials in water and wastewater treatment has drawn significant attention. Due to their superior features, they represent functional materials with great potential for pollution removal and environmental applications. OBJECTIVE: This literature review aims to summarize and present the metal nanoparticles used for dye wastewater treatment. The discussion subject is metallic nanoparticles for mentioned use, with a special focus on iron-based, bimetallic, and photocatalytic nanomaterials. METHODS: Reference search of "metal nanoparticles in dye wastewater treatment" was conducted in detail through the Serbian Library Consortium for Coordinated Acquisition (KoBSON). Published papers search was mainly based on Web of Science and ScienceDirect database focusing on the latest research on this topic. The corresponding literature was carefully read, analyzed, and evaluated. RESULTS: Two hundred and twenty-four scientific and review articles, thesis, and book chapters, patents were evaluated in order to summarise current trends in metal nanoparticle use in wastewater treatment. An increasing trend in scientific research regarding metal nanoparticles can be observed for the removal of different inorganic and organic pollutants. Among the most extensively tested are dye molecules, representing challenging species in terms of degradation and consequent removal. Modification, layering, combination, and green synthesis of metal nanoparticles result in materials capable of efficient and environmentally sustainable wastewater treatment. CONCLUSION: In this paper, an extensive review of metal nanoparticles in dye wastewater treatment is presented. With rapid water demand, the development of sustainable materials and technology is necessary. The use of these materials represents eco-friendly, energy-efficient, and sustainable water purification solutions. However, the matter of usage commercialization is still to be addressed.

4.
Sci Total Environ ; 615: 1341-1354, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751439

RESUMO

Most regional municipal solid waste landfills in Serbia are operated without control of landfill leachate and gas or with no regard for implementation of national and European legislation. For the first time in Serbia, groundwater and soil at a landfill were subject to systematic annual monitoring according to national, European legislation and adopted methodologies. Characterisation of the groundwater and soil samples from the landfill included ten metals (Fe, Mn, As, Zn, Cd, Pb, Ni, Cr, Cu and Hg), 16 EPA PAHs, nutrients and certain physicochemical parameters, in order to assess the risks such poorly controlled landfills pose to the environment. This impact assessment was performed using specially adapted pollution indices: LWPI, the Single factor pollution index and the Nemerow index for groundwater, and geo-accumulation index, ecological risk factor and selected rations of PAHs for soil. The data analysis included multivariate statistical methods (factor analysis of principal component analysis (PCA/FA)) in order to assess the extent of the contaminants detected in the groundwater and soil samples. The pollution indices (LWPI: 3.56-8.89; Nemerow index: 2.02-3.78) indicate the quality of the groundwater at the landfill is degrading over time, with PAH16, TOC, Cr, Cu, Pb and Zn as the substances of greatest concern. Heavy metals Hg (Igeo≤3.14), Pb (Igeo≤2.22), Cr (Igeo≤3.31) and Cu (Igeo≤2.16) represent the worst soil contamination. Hg has moderate (52.9) to very high (530.0) potential ecological risk, demonstrating the long-term potential effects of bioaccumulation and biomagnification. The results of this work indicate that Cr and Cu should possibly be added to the EU Watch List of emerging substances. This proposition is substantiated by relevant state and alike environmental information from nations in the region. This study demonstrates the need to develop a model for prioritization of landfill closure and remediation based on environmental risk assessment.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Subterrânea/química , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Sérvia , Solo/química , Instalações de Eliminação de Resíduos
5.
Water Environ Res ; 89(7): 663-671, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28641675

RESUMO

In this study, solar cells were used to generate an electric field for the electrokinetic remediation of metal contaminated sediment (Nickel, Cadmium, Zinc). For determination of metals mobility, bioavailability and potential toxicity, sequential extraction procedure, simultaneously extracted metals (SEM) and acid-volatile sulphide ratios (AVS) were performed before, during and after treatment.After 21 days of treatment, 63% Ni, 82% Cd and 58% Zn was removed from the anode region. The application of the electric field changed the chemical composition of the sediments. The risk assessment analysis based on pseudo total metals content, the risk assessment code and the relationship between SEM and AVS, indicates that a simple singular approach for risk assessment analysis and evaluation of the quality of sediments is not enough.


Assuntos
Técnicas Eletroquímicas , Poluentes Ambientais/química , Sedimentos Geológicos , Metais/química , Energia Solar
6.
ScientificWorldJournal ; 2014: 234654, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24526885

RESUMO

Pyrite ash (PA) is created by burning pyrite in the chemical production of sulphuric acid. The high concentration of iron oxide, mostly hematite, present in pyrite ash, gives the basis for its application as a source of catalytic iron in a modified Fenton process for anthraquinone dye reactive blue 4 (RB4) degradation. The effect of various operating variables such as catalyst and oxidant concentration, initial pH and RB4 concentration on the abatement of total organic carbon, and dye has been assessed in this study. Here we show that degradation of RB4 in the modified Fenton reaction was efficient under the following conditions: pH=2.5; [PA]0=0.2 g L(-1); [H2O2]0=5 mM and initial RB4 concentration up to 100 mg L(-1). The pyrite ash Fenton reaction can overcome limitations observed from the classic Fenton reaction, such as the early termination of the Fenton reaction. Metal (Pb, Zn, and Cu) content of the solution after the process suggests that an additional treatment step is necessary to remove the remaining metals from the water. These results provide basic knowledge to better understand the modified, heterogeneous Fenton process and apply the PA Fenton reaction for the treatment of wastewaters which contains anthraquinone dyes.


Assuntos
Antraquinonas/química , Corantes/química , Ferro/química , Sulfetos/química , Catálise , Peróxido de Hidrogênio/química , Cinética , Oxirredução
7.
Chemosphere ; 92(11): 1490-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23642638

RESUMO

The aim of this study was to determine the possibility of using fly ash and combination of kaolinite and fly ash for the solidification/stabilization (S/S) of Ni and Zn contaminated sediment from the Krivaja river basin (Serbia), which represents an extraordinary risk to the environment and belongs to the last quality class in the Serbian sediment classification. Fly ash was used as a stabilising agent because it occurs as a secondary industrial product, so in this way two types of waste are immobilized. Microwave assisted BCR sequential extraction procedure was employed to assess potential of Ni and Zn mobility and risk to the aquatic environment. In order to determine the long-term behavior of the S/S mixture, the semi-dynamic ANS 16.1 leaching test was performed. The existing leaching method was modified and acetic acid and humic acid were also used as leachants instead of deionised water, in order to simulate possible "worst case" leaching conditions for S/S waste being disposed of in a landfill environment (acid rain, floods, etc.). S/S effectiveness was evaluated by measuring the cumulative fractions of metals leached, effective diffusion coefficients - De and leachability indices - LX. X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analyzer (EDS) along with leaching tests were implemented to elucidate the mechanisms responsible for immobilization of the Ni and Zn. The controlling leaching mechanism was found to be diffusion, in all treated samples. Overall, the test results indicated that S/S treatment was effective for immobilization of these two types of waste, and can be considered acceptable for "controlled utilization".


Assuntos
Cinza de Carvão/química , Sedimentos Geológicos/química , Química Verde , Níquel/química , Níquel/isolamento & purificação , Zinco/química , Zinco/isolamento & purificação , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Caulim/química , Peso Molecular , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...