Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(9): 1396-1403, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488504

RESUMO

The NCI's Cloud Resources (CR) are the analytical components of the Cancer Research Data Commons (CRDC) ecosystem. This review describes how the three CRs (Broad Institute FireCloud, Institute for Systems Biology Cancer Gateway in the Cloud, and Seven Bridges Cancer Genomics Cloud) provide access and availability to large, cloud-hosted, multimodal cancer datasets, as well as offer tools and workspaces for performing data analysis where the data resides, without download or storage. In addition, users can upload their own data and tools into their workspaces, allowing researchers to create custom analysis workflows and integrate CRDC-hosted data with their own. See related articles by Brady et al., p. 1384, Wang et al., p. 1388, and Kim et al., p. 1404.


Assuntos
Computação em Nuvem , National Cancer Institute (U.S.) , Neoplasias , Humanos , Neoplasias/genética , Estados Unidos , Pesquisa Biomédica , Genômica/métodos , Biologia Computacional/métodos
2.
Cancer Res ; 84(9): 1404-1409, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488510

RESUMO

More than ever, scientific progress in cancer research hinges on our ability to combine datasets and extract meaningful interpretations to better understand diseases and ultimately inform the development of better treatments and diagnostic tools. To enable the successful sharing and use of big data, the NCI developed the Cancer Research Data Commons (CRDC), providing access to a large, comprehensive, and expanding collection of cancer data. The CRDC is a cloud-based data science infrastructure that eliminates the need for researchers to download and store large-scale datasets by allowing them to perform analysis where data reside. Over the past 10 years, the CRDC has made significant progress in providing access to data and tools along with training and outreach to support the cancer research community. In this review, we provide an overview of the history and the impact of the CRDC to date, lessons learned, and future plans to further promote data sharing, accessibility, interoperability, and reuse. See related articles by Brady et al., p. 1384, Wang et al., p. 1388, and Pot et al., p. 1396.


Assuntos
Disseminação de Informação , National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Disseminação de Informação/métodos , Pesquisa Biomédica/tendências , Bases de Dados Factuais , Big Data
3.
Cancer Res ; 84(9): 1388-1395, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488507

RESUMO

Since 2014, the NCI has launched a series of data commons as part of the Cancer Research Data Commons (CRDC) ecosystem housing genomic, proteomic, imaging, and clinical data to support cancer research and promote data sharing of NCI-funded studies. This review describes each data commons (Genomic Data Commons, Proteomic Data Commons, Integrated Canine Data Commons, Cancer Data Service, Imaging Data Commons, and Clinical and Translational Data Commons), including their unique and shared features, accomplishments, and challenges. Also discussed is how the CRDC data commons implement Findable, Accessible, Interoperable, Reusable (FAIR) principles and promote data sharing in support of the new NIH Data Management and Sharing Policy. See related articles by Brady et al., p. 1384, Pot et al., p. 1396, and Kim et al., p. 1404.


Assuntos
Disseminação de Informação , National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/metabolismo , Disseminação de Informação/métodos , Pesquisa Biomédica , Genômica/métodos , Animais , Proteômica/métodos
4.
Cancer Res ; 84(9): 1384-1387, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488505

RESUMO

The NCI Cancer Research Data Commons (CRDC) is a collection of data commons, analysis platforms, and tools that make existing cancer data more findable and accessible by the cancer research community. In practice, the two biggest hurdles to finding and using data for discovery are the wide variety of models and ontologies used to describe data, and the dispersed storage of that data. Here, we outline core CRDC services to aggregate descriptive information from multiple studies for findability via a single interface and to provide a single access method that spans multiple data commons. See related articles by Wang et al., p. 1388, Pot et al., p. 1396, and Kim et al., p. 1404.


Assuntos
National Cancer Institute (U.S.) , Neoplasias , Humanos , Estados Unidos , Neoplasias/terapia , Pesquisa Biomédica/normas , Bases de Dados Factuais
5.
J Clin Oncol ; 41(24): 4045-4053, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37267580

RESUMO

Data-driven basic, translational, and clinical research has resulted in improved outcomes for children, adolescents, and young adults (AYAs) with pediatric cancers. However, challenges in sharing data between institutions, particularly in research, prevent addressing substantial unmet needs in children and AYA patients diagnosed with certain pediatric cancers. Systematically collecting and sharing data from every child and AYA can enable greater understanding of pediatric cancers, improve survivorship, and accelerate development of new and more effective therapies. To accomplish this goal, the Childhood Cancer Data Initiative (CCDI) was launched in 2019 at the National Cancer Institute. CCDI is a collaborative community endeavor supported by a 10-year, $50-million (in US dollars) annual federal investment. CCDI aims to learn from every patient diagnosed with a pediatric cancer by designing and building a data ecosystem that facilitates data collection, sharing, and analysis for researchers, clinicians, and patients across the cancer community. For example, CCDI's Molecular Characterization Initiative provides comprehensive clinical molecular characterization for children and AYAs with newly diagnosed cancers. Through these efforts, the CCDI strives to provide clinical benefit to patients and improvements in diagnosis and care through data-focused research support and to build expandable, sustainable data resources and workflows to advance research well past the planned 10 years of the initiative. Importantly, if CCDI demonstrates the success of this model for pediatric cancers, similar approaches can be applied to adults, transforming both clinical research and treatment to improve outcomes for all patients with cancer.


Assuntos
Neoplasias , Adolescente , Estados Unidos/epidemiologia , Humanos , Criança , Adulto Jovem , Neoplasias/terapia , Ecossistema , Coleta de Dados , National Cancer Institute (U.S.)
6.
Sci Data ; 9(1): 727, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435936

RESUMO

Seroprevalence studies provide useful information about the proportion of the population either vaccinated against SARS-CoV-2, previously infected with the virus, or both. Numerous studies have been conducted in the United States, but differ substantially by dates of enrollment, target population, geographic location, age distribution, and assays used. This can make it challenging to identify and synthesize available seroprevalence data by geographic region or to compare infection-induced versus combined infection- and vaccination-induced seroprevalence. To facilitate public access and understanding, the National Institutes of Health and the Centers for Disease Control and Prevention developed the COVID-19 Seroprevalence Studies Hub (COVID-19 SeroHub, https://covid19serohub.nih.gov/ ), a data repository in which seroprevalence studies are systematically identified, extracted using a standard format, and summarized through an interactive interface. Within COVID-19 SeroHub, users can explore and download data from 178 studies as of September 1, 2022. Tools allow users to filter results and visualize trends over time, geography, population, age, and antigen target. Because COVID-19 remains an ongoing pandemic, we will continue to identify and include future studies.


Assuntos
COVID-19 , SARS-CoV-2 , Estudos Soroepidemiológicos , Humanos , Estados Unidos , Vacinação
7.
JCO Clin Cancer Inform ; 5: 881-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428097

RESUMO

Cancer Informatics for Cancer Centers (CI4CC) is a grassroots, nonprofit 501c3 organization intended to provide a focused national forum for engagement of senior cancer informatics leaders, primarily aimed at academic cancer centers anywhere in the world but with a special emphasis on the 70 National Cancer Institute-funded cancer centers. This consortium has regularly held topic-focused biannual face-to-face symposiums. These meetings are a place to review cancer informatics and data science priorities and initiatives, providing a forum for discussion of the strategic and pragmatic issues that we faced at our respective institutions and cancer centers. Here, we provide meeting highlights from the latest CI4CC Symposium, which was delayed from its original April 2020 schedule because of the COVID-19 pandemic and held virtually over three days (September 24, October 1, and October 8) in the fall of 2020. In addition to the content presented, we found that holding this event virtually once a week for 6 hours was a great way to keep the kind of deep engagement that a face-to-face meeting engenders. This is the second such publication of CI4CC Symposium highlights, the first covering the meeting that took place in Napa, California, from October 14-16, 2019. We conclude with some thoughts about using data science to learn from every child with cancer, focusing on emerging activities of the National Cancer Institute's Childhood Cancer Data Initiative.


Assuntos
COVID-19 , Informática Médica , Neoplasias , Adolescente , Criança , Ciência de Dados , Humanos , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias , SARS-CoV-2 , Adulto Jovem
8.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188573, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052390

RESUMO

Current applications of artificial intelligence (AI), machine learning, and deep learning in cancer research and clinical care are highly diverse-from aiding radiologists in reading medical images to predicting oncoprotein folding and dynamics. The list of available AI-based tools is growing rapidly and will only continue to expand. With the immense potential for AI to advance cancer research and clinical care, the National Cancer Institute (NCI) has a responsibility to consider and support the development and evaluation of such technologies. NCI's current involvement in AI research spans the spectrum of development, implementation, and assessment. That includes generating large, publicly available, curated datasets; shifting the culture of data sharing; training the next generation of scientists in both AI and cancer sciences; fostering interdisciplinary collaborations; investing in research to improve AI methods and models that are designed specifically for cancer; widening access to computing power; procuring computer architecture for future developments; and assuring AI research and technologies follow ethical principles. In addition to a broad overview of AI applications in cancer research and care, and NCI's ongoing AI-based activities, this Perspective outlines NCI's four priority areas for future investment of cancer-focused AI development.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Oncologia , National Cancer Institute (U.S.) , Neoplasias , Animais , Difusão de Inovações , Humanos , Aprendizado de Máquina , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Estados Unidos
9.
J Am Med Inform Assoc ; 27(4): 647-651, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32090259

RESUMO

Ensuring that federally funded health research keeps pace with the explosion of health data depends on better information technology (IT), access to high-quality electronic health data, and supportive policies. Because it prominently funds and conducts health research, the U.S. federal government needs health IT to rapidly evolve and has the ability to drive that evolution. The Office of the National Coordinator for Health Information Technology developed the National Health IT Priorities for Research: A Policy and Development Agenda (the Agenda) that identifies health IT priorities for research in consultation with relevant federal agencies. This article describes support for the Agenda from the Food and Drug Administration, the National Institutes of Health, and the Veterans Health Administration. Advancing the Agenda will benefit these agencies and support their missions as well as the entire ecosystem leveraging the health IT infrastructure or using data from health IT systems for research.


Assuntos
Órgãos Governamentais , Informática Médica , Pesquisa , Pesquisa Biomédica , National Institutes of Health (U.S.) , Política Pública , Estados Unidos , United States Department of Veterans Affairs , United States Food and Drug Administration
11.
Front Cell Dev Biol ; 5: 83, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28983483

RESUMO

Advancements in next-generation sequencing and other -omics technologies are accelerating the detailed molecular characterization of individual patient tumors, and driving the evolution of precision medicine. Cancer is no longer considered a single disease, but rather, a diverse array of diseases wherein each patient has a unique collection of germline variants and somatic mutations. Molecular profiling of patient-derived samples has led to a data explosion that could help us understand the contributions of environment and germline to risk, therapeutic response, and outcome. To maximize the value of these data, an interdisciplinary approach is paramount. The National Cancer Institute (NCI) has initiated multiple projects to characterize tumor samples using multi-omic approaches. These projects harness the expertise of clinicians, biologists, computer scientists, and software engineers to investigate cancer biology and therapeutic response in multidisciplinary teams. Petabytes of cancer genomic, transcriptomic, epigenomic, proteomic, and imaging data have been generated by these projects. To address the data analysis challenges associated with these large datasets, the NCI has sponsored the development of the Genomic Data Commons (GDC) and three Cloud Resources. The GDC ensures data and metadata quality, ingests and harmonizes genomic data, and securely redistributes the data. During its pilot phase, the Cloud Resources tested multiple cloud-based approaches for enhancing data access, collaboration, computational scalability, resource democratization, and reproducibility. These NCI-led efforts are continuously being refined to better support open data practices and precision oncology, and to serve as building blocks of the NCI Cancer Research Data Commons.

12.
Mol Biochem Parasitol ; 126(2): 181-91, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12615317

RESUMO

The internal defense mechanism of the snail Biomphalaria glabrata during a schistosome infection is activated and mediated via the immune effector cells known as hemocytes. Since resistance and susceptibility to schistosome infection is known to be genetically determined, our interest was to use the EST approach as a gene discovery tool to examine transcription profiles in hemocytes of resistant snails pre- and post-exposure to Schistosoma mansoni. Comparative analysis of the transcripts suggested that parasite exposure caused an active metabolic response in the hemocytes. The most abundant transcripts were those showing 23-74% similarity to known reverse transcriptases (RT). Further characterization by RT-PCR indicated the RT transcripts were expressed in normal snails, parasite exposed snails, and the embryonic cell line Bge. To determine whether the occurrence of RT transcripts correlates to the presence of functional enzyme activity in the snails, RT assays were performed from both resistant and susceptible snails, pre- and post-exposure to miracidia, using protein extracts from the head-foot and posterior region tissues. Results indicated that in the resistant snail, RT activity was greater in the posterior region than in the head-foot. After exposure, however, RT activity increased dramatically in the head-foot, with peak activity at 24 h post-exposure. The detection of RT activity in B. glabrata was unexpected and the role of this enzyme in the hemocyte-mediated killing of parasites is not yet known. However, identification of this and other transcripts from these cells by the EST approach provides a useful resource towards elucidating the molecular basis of resistance/susceptibility in this snail-host parasite relationship.


Assuntos
Biomphalaria/genética , Hemócitos/parasitologia , Schistosoma mansoni/patogenicidade , Sequência de Aminoácidos , Animais , Biomphalaria/enzimologia , Biomphalaria/parasitologia , Southern Blotting , Linhagem Celular , Ciona intestinalis/enzimologia , Ciona intestinalis/genética , Etiquetas de Sequências Expressas , Hemócitos/fisiologia , Dados de Sequência Molecular , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...