Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 359: 326-346, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290724

RESUMO

Zeolitic imidazolate frameworks (ZIFs), as a very well-known subset of metal-organic frameworks (MOFs), have attracted considerable attention in biomedicine due to their unique structural features such as tunable pore size, high surface area, high thermal stability, biodegradability, and biocompatibility. Moreover, it is possible to load a wide variety of therapeutic agents, drugs, and biomolecules into ZIF structures during the fabrication process owing to the ZIFs' porous structure and concise synthesis methods under mild conditions. This review focuses on the most recent advances in the bioinspiration of ZIFs and ZIF-integrated nanocomposites in boosting antibacterial efficiencies and regenerative medicine capabilities. The first part summarizes the various synthesis routes and physicochemical properties of ZIFs, including size, morphology, surface, and pore size. The recent advancements in the antibacterial aspects of using ZIFs and ZIF-integrated nanocomposites as carriers for antibacterial agents and drug cargo are elaborated. Moreover, the antibacterial mechanisms based on the factors affecting the antibacterial properties of ZIFs such as oxidative stress, internal and external triggers, the effect of metal ions, and their associated combined therapies, are discussed. The recent trends of ZIFs and their composites in tissue regeneration, especially bone regeneration and wound healing, are also reviewed with in-depth perspectives. Finally, the biological safety aspects of ZIFs, the latest reports about their toxicity, and the future prospects of these materials in regenerative medicine have been discussed.


Assuntos
Estruturas Metalorgânicas , Zeolitas , Imidazóis/farmacologia , Imidazóis/química , Estruturas Metalorgânicas/química , Cicatrização
2.
Adv Mater ; 35(38): e2304176, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37270664

RESUMO

With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.


Assuntos
Nanopartículas , Nanoestruturas , Nanoestruturas/uso terapêutico , Nanoestruturas/química , Nanopartículas/química , Engenharia Biomédica , Bioengenharia , Sistemas de Liberação de Medicamentos/métodos
3.
J Biomater Sci Polym Ed ; 33(3): 279-298, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547988

RESUMO

Multifunctional nanocarriers as a promising platform could provide numerous opportunities in the field of drug delivery. Drug carriers loaded with both magnetic nanoparticles (MNPs) and therapeutic agents would allow the combination of chemotherapy with the possibility of monitoring or controlling the distribution of the nano vehicles in the body which may improve the effectiveness of the therapy. Furthermore, by applying these strategies, triggering drug release and/or synergistic hyperthermia treatment are also reachable. This study aimed to explore the potential of the quercetin (QUR) loaded magnetic nano-micelles for improving drug bioavailability while reducing the drug adverse effects. The bio-safety of developed QUR loaded magnetic nano-micelles (QMNMs) were conducted via mitochondrial toxicity using isolated rat liver mitochondria including glutathione (GSH), malondialdehyde (MDA), and the ferric reducing ability of plasma (FRAP). QMNMs with a mean particle size of 85 nm (PDI value of 0.269) and great physical stability were produced. Also, TEM images indicated that the prepared QMNMs were semi-spherical in shape. These findings also showed that the constructed QMNMs, as a pH-sensitive drug delivery system, exhibited a stable and high rate of QUR release under mildly acidic conditions pH (5.3) compared to neutral pH (7.4). The most striking result to emerge from the data is that an investigation of various mitochondrial functional parameters revealed that both QMNMs and QUR have no specific mitochondrial toxicity. Altogether, these results offer overwhelming evidence for the bio-safety of QMNMs and might be used as an effective drug delivery system for targeting and stimuli-responsive QUR delivery.


Assuntos
Micelas , Quercetina , Animais , Doxorrubicina , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Fenômenos Magnéticos , Mitocôndrias Hepáticas , Tamanho da Partícula , Polímeros , Quercetina/toxicidade , Ratos
4.
J Biomater Appl ; 36(6): 1055-1063, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304637

RESUMO

In this research, magnetic nanostructured lipid carriers (Mag-NLCs) were synthesized for curcumin (CUR) delivery. NLCs are drug-delivery systems prepared by mixing solid and liquid (oil) lipids. For preparation of NLCs, cetylpalmitate was selected as solid lipid and fish oil as liquid lipid. CUR-Mag-NLCs were prepared using high-pressure homogenization technique and were characterized by methods including X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The CUR-Mag-NLCs were developed as a particle with a size of 140 ± 3.6 nm, a polydispersity index of 0.196, and a zeta potential of -22.6 mV. VSM analysis showed that the CUR-Mag-NLCs have excellent magnetic properties. Release rate of the drug was higher at 42 °C than 37 °C, indicating that release of the synthesized nanoparticles is temperature-dependent. Evaluation of mitochondrial toxicity was done using the isolated rats liver mitochondria including glutathione (GSH), malondialdehyde (MDA), and the ferric- reducing ability of plasma (FRAP) assays to study biosafety of the CUR-Mag-NLCs. Results of In vitro study on the isolated mitochondria revealed that both CUR-Mag-NLCs and curcumin have no specific mitochondrial toxicity.


Assuntos
Curcumina , Nanopartículas , Nanoestruturas , Animais , Curcumina/toxicidade , Portadores de Fármacos/toxicidade , Lipídeos/toxicidade , Fenômenos Magnéticos , Mitocôndrias Hepáticas , Nanopartículas/toxicidade , Tamanho da Partícula , Ratos
5.
ACS Biomater Sci Eng ; 7(6): 2701-2715, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34061500

RESUMO

The present study introduces a superparamagnetic nanocomposite, Fe-Si-In, as a T2 magnetic resonance imaging (MRI) contrast agent with a core of iron oxide nanoparticles and a nonporous silica inner shell/carboxymethyl inulin outer shell. Due to its core/shell properties, the structure characterization, biocompatibility, and performance in MRI, as well as its potential as a drug delivery system, were thoroughly evaluated. The results have shown that the synthesized nanocomposite possesses excellent biocompatibility and acceptable magnetization (Ms = 20 emu g-1). It also has the potential to be a nanocarrier for drug delivery purposes, as evidenced by the results of curcumin administration studies. The developed nanocomposite has shown excellent performance in MRI, while the in vitro relaxivity measurements reveal a stronger T2 relaxivity (r2 = 223.2 ms) compared to the commercial samples available in the market. Furthermore, the in vivo MRI studies demonstrate an excellent contrast between injured livers and normal ones in rats which again upholds the high performance of Fe-Si-In in MRI diagnostics.


Assuntos
Inulina , Falência Hepática Aguda , Animais , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Medicina de Precisão , Ratos
6.
J Biomater Sci Polym Ed ; 32(10): 1356-1369, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882784

RESUMO

This paper proposed an engineered mesoporous silica-coated Fe3O4 nanoparticle, PVPMSFe, prepared by a sol-gel/surface-protected etching mechanism as an MRI T2 contrast agent. To this end, the structural characterization of the nanocomposite was performed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, VSM, thermogravimetric analysis (TGA), TEM, FESEM, and energy-dispersive X-ray scanning electron microscopy (EDS). The findings show that the synthesized nanocomposite has a mesoporous structure with an average particle size of 11.8 nm and excellent magnetization properties. The biocompatibility of PVPMSFe was investigated by MTT assay and hemolysis assay of red blood cells and the results indicate that PVPMSFe has favorable biocompatibility. Besides, the effect of PVPMSFe was assessed with MRI relaxivity measurement (T2 signal). Regarding the in vitro MRI relaxivity measurements outputs (r2=144.4), PVPMSFe can attenuate the T2 signal of MRI, perfectly which makes it an efficient T2 contrast agent.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Meios de Contraste , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Heliyon ; 6(9): e04928, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995618

RESUMO

Synthetic hydroxyapatite (HA) due to its high biocompatibility, anti-inflammatory properties, high stability, and a flexible structure in combination with magnetic nanoparticles has the strong potential to be used in modern medicine including tissue engineering, imaging, and drug delivery. Herein, a hydrothermal process was used to prepare magnetite nanoparticles dispersed on the hydroxyapatite nanorods with cetyltrimethylammonium bromide (CTAB) as a surfactant. Characterization study of the synthesized iron oxide-hydroxyapatite (IO-HA) nanocomposite was performed by FT-IR spectroscopy, X-ray powder diffraction, energy dispersive X-Ray analysis (EDX) for elemental mapping, transmission electron microscopy, and vibrating sample magnetometer. Then, the biocompatibility of the synthesized nanocomposite studied by 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) assay and hemocompatibility assay. Focus on this point, curcumin loaded IO-HA (Cur@IO-HA) was developed for exploring the pH-sensitivity of the drug carrier and then evaluating its cellular uptake. The in vitro efficacy of the synthesized nanocomposites as a magnetic resonance imaging (MRI) contrast agent was also investigated. Our results showed that IO-HA nanocomposite is non-cytotoxic and hemocompatible as well as a good pH-sensitive drug carrier and a favorable MRI T2 contrast agent. Comparing to the free curcumin, Cur@IO-HA displayed a good cellular uptake. Taking into account the above issues, IO-HA nanocomposite has the most potential for application as a theranostic MRI contrast agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...