Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 767: 144258, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429276

RESUMO

Prescribed fire is widely used for ecosystem restoration, yet the mechanisms that determine its effectiveness remain poorly characterized. Because soil hydrology influences ecosystem processes like erosion, runoff, and plant competition, it is important to understand how fire affects soil hydrology. A systematic approach to understanding relationships among vegetation, topography, and fire is needed to advance knowledge of how fire influences soil properties that in turn affect restoration success. Our objective was to characterize relationships among burn severity, vegetation, and soil hydrology in a heterogenous landscape under restoration management. Our study took place in a barrens-forest mosaic with recent prescribed fire history ranging from 0 to 10 burns since 1960, and additional variation in fuel loading, burn severity, vegetation cover, topography, and soils. We measured soil hydraulic conductivity (SHC) during two consecutive years, which represented control, prefire, postfire, and 1-year postfire conditions. Regression tree analysis identified an important threshold effect of antecedent soil moisture on SHC; soils with initial moisture < 13% had lower SHC than soils with initial moisture > 13%. Furthermore, above this threshold, sites with intermediate to high recent burn frequency (4-10 burns) had significantly greater SHC than unburned control sites. High fuel loads associated with brush cutting and piling increased SHC at barrens sites but not brush or pine sites, suggesting an interaction between vegetation cover and fire effects on SHC. At the local hillslope scale, toe-slopes had greater SHC than summits. Our results suggest that repeated prescribed fires of moderate to high frequency may enhance SHC, thereby reducing soil water retention and potentially restoring functional pine barren processes that limit woody plant growth. Prescribed fire may therefore be an important management tool for reversing mesophication and restoring a global array of open canopy ecosystems.

2.
Ecol Appl ; 30(5): e02097, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32078225

RESUMO

In recent decades, a paradigm shift in forest management and associated policies has led to greater emphasis on harvest practices that retain mature, overstory trees in forest stands that would otherwise be clear-cut. While it is often assumed that the maintenance of compositional and structural complexity, such as that achieved through retention forestry approaches, will also mitigate negative impacts to functional diversity, empirical evidence of this relationship is sparse. We examined the effects of an aggregated retention system on taxonomic and functional diversity in a regenerating aspen-dominated forest. Sampling was conducted along transects arranged to capture the transition from harvested (regenerating) forest to mature, unharvested forest (both intact forest stands and 0.1 ha retention aggregates). We then assessed the magnitude and distance of edge effects on multiple indices of taxonomic and functional diversity as well as functional identity. Twelve years after harvest, the distance and magnitude of edge effects on functional and taxonomic diversity did not differ between the two unharvested patch sizes (intact vs. aggregate); however, intact forest exhibited greater resistance to edge effects and greater depth of edge influence into harvested areas for some traits compared to aggregates. Analyses relying on functional traits were generally applicable across sites within a highly variable forest type, and our results demonstrate the promise of using functional traits to assess management impacts on plant diversity across a landscape. Aggregates maintained some functional attributes associated with interior forest and influenced adjacent regeneration. However, trends in some traits (i.e., shade tolerance and seed mass), particularly in the seedling layer, suggest aggregates of this size provide primarily edge habitat.


Assuntos
Agricultura Florestal , Mariposas , Animais , Ecossistema , Florestas , Árvores
3.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427510

RESUMO

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Assuntos
Biodiversidade , Ecossistema , Plantas , Teorema de Bayes , Mudança Climática , Atividades Humanas , Humanos
4.
Ecol Lett ; 20(12): 1534-1545, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067791

RESUMO

Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.


Assuntos
Biodiversidade , Ecossistema , Plantas , Reprodutibilidade dos Testes
5.
Ecol Appl ; 26(8): 2493-2504, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27787926

RESUMO

Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements (retention forestry), including unharvested patches (or aggregates) within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized among the diverse taxa and biomes in which retention forestry is practiced. Lack of comparability in methods for sampling and analyzing responses to timber harvest and edge creation presents a challenge to synthesis. We used a consistent methodology (similarly spaced plots or traps along transects) to investigate responses of vascular plants and ground-active beetles to aggregated retention at replicate sites in each of four temperate and boreal forest types on three continents: Douglas-fir forests in Washington, USA; aspen forests in Minnesota, USA; spruce forests in Sweden; and wet eucalypt forests in Tasmania, Australia. We assessed (1) differences in local (plot-scale) species richness and composition between mature (intact) and regenerating (previously harvested) forest; (2) the lifeboating function of aggregates (capacity to retain species of unharvested forest); and whether intact forests and aggregates (3) are susceptible to edge effects and (4) influence the adjacent regenerating forest. Intact and harvested forests differed in composition but not richness of plants and beetles. The magnitude of this difference was generally similar among regions, but there was considerable heterogeneity of composition within and among replicate sites. Aggregates within harvest units were effective at lifeboating for both plant and beetle communities. Edge effects were uncommon even within the aggregates. In contrast, effects of forest influence on adjacent harvested areas were common and as strong for aggregates as for larger blocks of intact forest. Our results provide strong support for the widespread application of aggregated retention in boreal and temperate forests. The consistency of pattern in four very different regions of the world suggests that, for forest plants and beetles, responses to aggregated retention are likely to apply more widely. Our results suggest that through strategic placement of aggregates, it is possible to maintain the natural heterogeneity and biodiversity of mature forests managed for multiple objectives.


Assuntos
Biodiversidade , Besouros , Florestas , Animais , Austrália , Conservação dos Recursos Naturais , Agricultura Florestal , Minnesota , Suécia , Tasmânia , Árvores , Washington
6.
Tree Physiol ; 24(12): 1347-57, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15465697

RESUMO

We established Populus deltoides Bartr. stands differing in nitrogen (N) availability and tested if: (1) N-induced carbon (C) allocation could be explained by developmental allocation controls; and (2) N uptake per unit root mass, i.e., specific N-uptake rate, increased with N availability. Closely spaced (1 x 1 m) stands were treated with 50, 100 and 200 kg N ha(-1) year(-1) of time-release balanced fertilizer (50N, 100N and 200N) and compared with unfertilized controls (0N). Measurements were made during two complete growing seasons from May 1998 through October 1999. Repeated nondestructive measurements were carried out to determine stem height and diameter, leaf area and fine-root dynamics. In October of both years, above- and belowground biomass was harvested, including soil cores for fine-root biomass. Leaves were harvested in July 1999. Harvested tissues were analyzed for C and N content. Nondestructive stem diameter and and fine-root dynamic measurements were combined with destructive harvest data to estimate whole-tree biomass and N content at the end of the year, and to estimate specific N-uptake rates during the 1999 growing season. Shoot growth response was greater in fertilized trees than in control trees; however, the 100N and 200N treatments did not enhance growth more than the 50N treatment. Root biomass proportions decreased over time and with increasing fertilizer treatment. Fertilizer-induced changes in allocation were explained by accelerated development. Specific N-uptake rates increased during the growing season and were higher for fertilized trees than for control trees.


Assuntos
Populus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Biomassa , Metabolismo dos Carboidratos/fisiologia , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Caules de Planta/crescimento & desenvolvimento , Populus/metabolismo , Árvores/metabolismo
7.
Tree Physiol ; 24(6): 651-60, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15059765

RESUMO

A closely spaced (1 x 1 m) cottonwood (Populus deltoides Bartr.) plantation was established to evaluate the effects of nutrient availability on fine root dynamics. Slow-release fertilizer (17:6:12 N,P,K plus micronutrients) was applied to 225-m(2) plots at 0, 50, 100 and 200 kg N ha(-1), and plots were monitored for two growing seasons. Fine root production, mortality, live root standing crop and life span were analyzed based on monthly minirhizotron observations. Fine root biomass was measured in soil cores. Fine root dynamics were controlled more by temporal, depth and root diameter factors than by fertilization. Cumulative fine root production and mortality showed strong seasonal patterns; production was greatest in the middle of the growing season and mortality was greatest after the growing season. Small diameter roots at shallow soil depths cycled more rapidly than larger or deeper roots. The strongest treatment effects were found in the most rapidly cycling roots. The standing crop of live roots increased with fertilizer treatment according to both minirhizotron and soil coring methods. However, production and mortality had unique treatment response patterns. Although cumulative mortality decreased in response to increased fertilization, cumulative production was intermediate at 0 kg N ha(-1), lowest with 50 kg N ha (-1), and highest with 200 kg N ha(-1). Aboveground growth responded positively to fertilization up to an application rate of 50 kg N ha(-1), but no further increases in growth were observed despite a threefold increase in application rate. Median fine root life span varied from 307 to over 700 days and increased with depth, diameter and nutrient availability.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Populus/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Agricultura , Biomassa , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Populus/fisiologia , Estações do Ano , Árvores/fisiologia , Wisconsin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...