Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Genet Med ; 25(1): 37-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322149

RESUMO

PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação , Epilepsia , Hérnia Diafragmática , Gravidez , Feminino , Humanos , Hipotonia Muscular/genética , Epilepsia/genética , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Convulsões/genética , Fenótipo , Estudos de Associação Genética , Síndrome
2.
J Med Genet ; 59(4): 393-398, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33879512

RESUMO

PURPOSE: The increased adoption of genomic strategies in the clinic makes it imperative for diagnostic laboratories to improve the efficiency of variant interpretation. Clinical exome sequencing (CES) is becoming a valuable diagnostic tool, capable of meeting the diagnostic demand imposed by the vast array of different rare monogenic disorders. We have assessed a clinician-led and phenotype-based approach for virtual gene panel generation for analysis of targeted CES in patients with rare disease in a single institution. METHODS: Retrospective survey of 400 consecutive cases presumed by clinicians to have rare monogenic disorders, referred on singleton basis for targeted CES. We evaluated diagnostic yield and variant workload to characterise the usefulness of a clinician-led approach for generation of virtual gene panels that can incorporate up to three different phenotype-driven gene selection methods. RESULTS: Abnormalities of the nervous system (54.5%), including intellectual disability, head and neck (19%), skeletal system (16%), ear (15%) and eye (15%) were the most common clinical features reported in referrals. Combined phenotype-driven strategies for virtual gene panel generation were used in 57% of cases. On average, 7.3 variants (median=5) per case were retained for clinical interpretation. The overall diagnostic rate of proband-only CES using personalised phenotype-driven virtual gene panels was 24%. CONCLUSIONS: Our results show that personalised virtual gene panels are a cost-effective approach for variant analysis of CES, maintaining diagnostic yield and optimising the use of resources for clinical genomic sequencing in the clinic.


Assuntos
Exoma , Doenças Raras , Exoma/genética , Humanos , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma , Carga de Trabalho
3.
Horm Res Paediatr ; 94(7-8): 307-312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34438404

RESUMO

INTRODUCTION: Hypophosphatasia is a systemic bone disease characterized by inhibition of bone mineralization due to mutations in the ALPL gene that results in a deficiency of tissue nonspecific alkaline phosphatase. The perinatal form is the most severe. In the past, this form was lethal, although human recombinant enzyme replacement therapy has now been developed and licensed, which improves survival. Perinatal hypophosphatasia is usually suggested on antenatal ultrasonography with undermineralization of the long bones, skull, and thoracic cavity. In the UK, antenatal ultrasonography for fetal anomalies is conducted at mid-gestation (i.e., 18-21 weeks gestational age), and if normal, no further routine scans are performed. Usually, this would identify abnormalities in bone mineralization suggestive of perinatal hypophosphatasia. CASES: We describe 2 cases of perinatal hypophosphatasia where mid-gestation ultrasonography was normal. In the first case, where a previous pregnancy had been terminated for perinatal hypophosphatasia, third trimester ultrasonography revealed skeletal features of hypophosphatasia. In the second case, the diagnosis of perinatal hypophosphatasia was made only immediately after birth. CONCLUSION: We conclude that serial antenatal ultrasonography or antenatal genetic testing should be considered in all pregnancies with a positive family history of hypophosphatasia, as mid-gestation ultrasonography cannot reliably exclude perinatal hypophosphatasia. This is especially important given that effective enzyme replacement therapy is now available.


Assuntos
Doenças Ósseas/genética , Testes Genéticos , Hipofosfatasia/diagnóstico , Mutação , Diagnóstico Pré-Natal , Ultrassonografia Pré-Natal , Fosfatase Alcalina/deficiência , Fosfatase Alcalina/genética , Feminino , Humanos , Hipofosfatasia/genética , Gravidez
4.
Cancer Genet ; 256-257: 77-80, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957466

RESUMO

Pathogenic germ-line variants in GATA2 (GATA2-deficiency) can cause childhood myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML), and can be associated with distinct clinical syndromic features. However, penetrance and genotype-phenotype correlations are incompletely understood. Here we report on the clinically diverse features of three siblings affected by GATA2c.1021_1031del over an 18-year period, all initially presenting in childhood and adolescence with MDS and AML with monosomy 7 (-7), and one also with trisomy 8 (+8). The siblings inherited a GATA2c.1021_1031del from their father who remains asymptomatic in his sixth decade. The two younger sisters are well after unrelated haematopoietic stem cell transplantation (HSCT), while the first boy died of severe chronic lung disease after sibling HSCT from his youngest sister, who subsequently also developed GATA2-deficiency associated MDS. This family illustrates high penetrance with variable genotype/phenotype correlation within one generation with GATA2-deficiency. We surmise that the lung disease post sibling HSCT was also caused by the GATA2-deficiency. The experience with this family underlines the necessity for GATA2 analysis in all apparently sporadic childhood and teenage MDS and AML with -7 also in the absence of a family history or other clinical features, and rigorous genetic testing in siblings. Moreover, our findings support the arguments for pre-emptive HSCT in variant-carrying siblings.


Assuntos
Análise Citogenética , Fator de Transcrição GATA2/deficiência , Fator de Transcrição GATA2/genética , Leucemia Mieloide/genética , Penetrância , Irmãos , Adolescente , Adulto , Sequência de Bases , Criança , Evolução Fatal , Feminino , Humanos , Leucemia Mieloide/diagnóstico por imagem , Masculino , Linhagem
5.
Am J Hum Genet ; 108(6): 1083-1094, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34022131

RESUMO

Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.


Assuntos
Regiões 5' não Traduzidas , Deficiências do Desenvolvimento/etiologia , Predisposição Genética para Doença , Mutação com Perda de Função , Criança , Estudos de Coortes , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/patologia , Humanos , Fatores de Transcrição MEF2/genética , Sequenciamento do Exoma
6.
Eur J Med Genet ; 63(9): 103974, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32534991

RESUMO

Ligase IV (LIG4) syndrome is a rare disorder of DNA damage repair caused by biallelic, pathogenic variants in LIG4. This is a phenotypically heterogeneous condition with clinical presentation varying from lymphoreticular malignancies in developmentally normal individuals to significant microcephaly, primordial dwarfism, radiation hypersensitivity, severe combined immunodeficiency and early mortality. Renal defects have only rarely been described as part of the ligase IV disease spectrum. We identified a consanguineous family where three siblings presenting with antenatal growth retardation, microcephaly, severe renal anomalies and skeletal abnormalities, including radial ray defects. Autozygosity mapping and exome sequencing identified a novel homozygous frameshift variant in LIG4, c.597_600delTCAG, p.(Gln200LysfsTer33), which segregated in the family. LIG4 is encoded by a single exon and so this frameshift variant is predicted to result in a protein truncated by 678 amino acids. This is the shortest predicted LIG4 protein product reported and correlates with the most severe clinical phenotype described to date. We note the clinical overlap with Fanconi anemia and suggest that LIG4 syndrome is considered in the differential diagnosis of this severe developmental disorder.


Assuntos
Anormalidades Craniofaciais/genética , DNA Ligase Dependente de ATP/genética , Anemia de Fanconi/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Microcefalia/genética , Rim Displásico Multicístico/genética , Fenótipo , Rádio (Anatomia)/anormalidades , Adulto , Consanguinidade , Anormalidades Craniofaciais/patologia , Anemia de Fanconi/patologia , Feminino , Feto/anormalidades , Mutação da Fase de Leitura , Transtornos do Crescimento/patologia , Humanos , Síndromes de Imunodeficiência/patologia , Recém-Nascido , Masculino , Microcefalia/patologia , Rim Displásico Multicístico/patologia , Gravidez , Rádio (Anatomia)/embriologia
7.
Orphanet J Rare Dis ; 15(1): 103, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334637

RESUMO

BACKGROUND: The European Reference Networks, ERNs, are virtual networks for healthcare providers across Europe to collaborate and share expertise on complex or rare diseases and conditions. As part of the ERNs, the Clinical Patient Management System, CPMS, a secure digital platform, was developed to allow and facilitate web-based, clinical consultations between submitting clinicians and relevant international experts. The European Reference Network on Intellectual Disability, TeleHealth and Congenital Anomalies, ERN ITHACA, was formed to harness the clinical and diagnostic expertise in the sector of rare, multiple anomaly and/or intellectual disability syndromes, chromosome disorders and undiagnosed syndromic disorders. We present the first year results of CPMS use by ERN ITHACA as an example of a telemedicine strategy for the diagnosis and management of patients with rare developmental disorders. RESULTS: ERN ITHACA ranked third in telemedicine activity amongst 24 European networks after 12 months of using the CPMS. Information about 28 very rare cases from 13 different centres across 7 countries was shared on the platform, with diagnostic or other management queries. Early interaction with patient support groups identified data protection as of primary importance in adopting digital platforms for patient diagnosis and care. The first launch of the CPMS was built to accommodate the needs of all ERNs. The ERN ITHACA telemedicine process highlighted a need to customise the CPMS with network-specific requirements. The results of this effort should enhance the CPMS utility for telemedicine services and ERN-specific care outcomes. CONCLUSIONS: We present the results of a long and fruitful process of interaction between the ERN ITHACA network lead team and EU officials, software developers and members of 38 EU clinical genetics centres to organise and coordinate direct e-healthcare through a secure, digital platform. The variability of the queries in just the first 28 cases submitted to the ERN ITHACA CPMS is a fair representation of the complexity and rarity of the patients referred, but also proof of the sophisticated and variable service that could be provided through a structured telemedicine approach for patients and families with rare developmental disorders. Web-based approaches are likely to result in increased accessibility to clinical genomic services.


Assuntos
Doenças Raras , Telemedicina , Criança , Atenção à Saúde , Deficiências do Desenvolvimento , Europa (Continente) , Humanos , Doenças Raras/diagnóstico , Doenças Raras/terapia
8.
Am J Hum Genet ; 106(5): 596-610, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32243864

RESUMO

Weaver syndrome (WS), an overgrowth/intellectual disability syndrome (OGID), is caused by pathogenic variants in the histone methyltransferase EZH2, which encodes a core component of the Polycomb repressive complex-2 (PRC2). Using genome-wide DNA methylation (DNAm) data for 187 individuals with OGID and 969 control subjects, we show that pathogenic variants in EZH2 generate a highly specific and sensitive DNAm signature reflecting the phenotype of WS. This signature can be used to distinguish loss-of-function from gain-of-function missense variants and to detect somatic mosaicism. We also show that the signature can accurately classify sequence variants in EED and SUZ12, which encode two other core components of PRC2, and predict the presence of pathogenic variants in undiagnosed individuals with OGID. The discovery of a functionally relevant signature with utility for diagnostic classification of sequence variants in EZH2, EED, and SUZ12 supports the emerging paradigm shift for implementation of DNAm signatures into diagnostics and translational research.


Assuntos
Anormalidades Múltiplas/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Mutação , Complexo Repressor Polycomb 2/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Mosaicismo , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias , Reprodutibilidade dos Testes , Fatores de Transcrição , Adulto Jovem
9.
Am J Med Genet A ; 179(9): 1725-1744, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31222966

RESUMO

Costello syndrome (CS) is a RASopathy caused by activating germline mutations in HRAS. Due to ubiquitous HRAS gene expression, CS affects multiple organ systems and individuals are predisposed to cancer. Individuals with CS may have distinctive craniofacial features, cardiac anomalies, growth and developmental delays, as well as dermatological, orthopedic, ocular, and neurological issues; however, considerable overlap with other RASopathies exists. Medical evaluation requires an understanding of the multifaceted phenotype. Subspecialists may have limited experience in caring for these individuals because of the rarity of CS. Furthermore, the phenotypic presentation may vary with the underlying genotype. These guidelines were developed by an interdisciplinary team of experts in order to encourage timely health care practices and provide medical management guidelines for the primary and specialty care provider, as well as for the families and affected individuals across their lifespan. These guidelines are based on expert opinion and do not represent evidence-based guidelines due to the lack of data for this rare condition.


Assuntos
Anormalidades Múltiplas/genética , Síndrome de Costello/genética , Coração/fisiopatologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Anormalidades Múltiplas/fisiopatologia , Síndrome de Costello/fisiopatologia , Síndrome de Costello/terapia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Gerenciamento Clínico , Face/anormalidades , Regulação da Expressão Gênica/genética , Genótipo , Mutação em Linhagem Germinativa/genética , Guias como Assunto , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/fisiopatologia , Humanos , Fenótipo
10.
Am J Med Genet A ; 179(6): 1091-1097, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30908877

RESUMO

The neurofibromatoses, which include neurofibromatosis type I (NF1), neurofibromatosis type II (NF2), and schwannomatosis, are a group of syndromes characterized by tumor growth in the nervous system. The RASopathies are a group of syndromes caused by germline mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. The RASopathies include NF1, Noonan syndrome, Noonan syndrome with multiple lentigines, Costello syndrome, cardio-facio-cutaneous syndrome, Legius syndrome, capillary malformation arterio-venous malformation syndrome, and SYNGAP1 autism. Due to their common underlying pathogenetic etiology, all these syndromes have significant phenotypic overlap of which one common feature include a predisposition to tumors, which may be benign or malignant. Together as a group, they represent one of the most common multiple congenital anomaly syndromes estimating to affect approximately one in 1000 individuals worldwide. The subcontinent of India represents one of the largest populations in the world, yet remains underserved from an aspect of clinical genetics services. In an effort to bridge this gap, the First International Conference on RASopathies and Neurofibromatoses in Asia: Identification and Advances of New Therapeutics was held in Kochi, Kerala, India. These proceedings chronicle this timely and topical international symposium directed at discussing the best practices and therapies for individuals with neurofibromatoses and RASopathies.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas Quinases Ativadas por Mitógeno/genética , Neurofibromatoses/etiologia , Proteínas ras/genética , Biomarcadores , Gerenciamento Clínico , Estudos de Associação Genética/métodos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Técnicas de Diagnóstico Molecular , Terapia de Alvo Molecular , Neurofibromatoses/diagnóstico , Neurofibromatoses/terapia , Transdução de Sinais , Pesquisa Translacional Biomédica , Proteínas ras/metabolismo
11.
Eur J Hum Genet ; 27(5): 747-759, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664714

RESUMO

CYFIP2, encoding the evolutionary highly conserved cytoplasmic FMRP interacting protein 2, has previously been proposed as a candidate gene for intellectual disability and autism because of its important role linking FMRP-dependent transcription regulation and actin polymerization via the WAVE regulatory complex (WRC). Recently, de novo variants affecting the amino acid p.Arg87 of CYFIP2 were reported in four individuals with epileptic encephalopathy. We here report 12 independent patients harboring a variety of de novo variants in CYFIP2 broadening the molecular and clinical spectrum of a novel CYFIP2-related neurodevelopmental disorder. Using trio whole-exome or -genome sequencing, we identified 12 independent patients carrying a total of eight distinct de novo variants in CYFIP2 with a shared phenotype of intellectual disability, seizures, and muscular hypotonia. We detected seven different missense variants, of which two occurred recurrently (p.(Arg87Cys) and p.(Ile664Met)), and a splice donor variant in the last intron for which we showed exon skipping in the transcript. The latter is expected to escape nonsense-mediated mRNA decay resulting in a truncated protein. Despite the large spacing in the primary structure, the variants spatially cluster in the tertiary structure and are all predicted to weaken the interaction with WAVE1 or NCKAP1 of the actin polymerization regulating WRC-complex. Preliminary genotype-phenotype correlation indicates a profound phenotype in p.Arg87 substitutions and a more variable phenotype in other alterations. This study evidenced a variety of de novo variants in CYFIP2 as a novel cause of mostly severe intellectual disability with seizures and muscular hypotonia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Citoplasma/metabolismo , Deficiência Intelectual/genética , Mutação/genética , Convulsões/genética , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares
12.
Genome Res ; 29(2): 159-170, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30587507

RESUMO

Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of proband-parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at noncanonical positions in splice sites. We estimate 35%-40% of pathogenic variants in noncanonical splice site positions are missing from public databases.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação , Sítios de Splice de RNA , Exoma , Humanos , Sequenciamento do Exoma
13.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388402

RESUMO

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Assuntos
Haploinsuficiência/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Fatores de Transcrição NFI/genética , Adolescente , Adulto , Animais , Córtex Cerebral/patologia , Criança , Pré-Escolar , Códon sem Sentido/genética , Estudos de Coortes , Corpo Caloso/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
14.
Am J Med Genet A ; 176(12): 2924-2929, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30302932

RESUMO

This report summarizes and highlights the fifth International RASopathies Symposium: When Development and Cancer Intersect, held in Orlando, Florida in July 2017. The RASopathies comprise a recognizable pattern of malformation syndromes that are caused by germ line mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. Because of their common underlying pathogenetic etiology, there is significant overlap in their phenotypic features, which includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, gastrointestinal and ocular abnormalities, neurological and neurocognitive issues, and a predisposition to cancer. The RAS pathway is a well-known oncogenic pathway that is commonly found to be activated in somatic malignancies. As in somatic cancers, the RASopathies can be caused by various pathogenetic mechanisms that ultimately impact or alter the normal function and regulation of the MAPK pathway. As such, the RASopathies represent an excellent model of study to explore the intersection of the effects of dysregulation and its consequence in both development and oncogenesis.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas ras/genética , Animais , Regulação da Expressão Gênica , Estudos de Associação Genética/métodos , Desenvolvimento Humano , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Organogênese/genética , Transdução de Sinais , Síndrome , Proteínas ras/metabolismo
15.
Am J Hum Genet ; 102(6): 1195-1203, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29861108

RESUMO

Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.


Assuntos
Estudos de Associação Genética , Padrões de Herança/genética , Mutação com Perda de Função/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Quinases/genética , Adolescente , Adulto , Sequência de Bases , Linhagem Celular , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Lactente , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Translocação Genética , Adulto Jovem
16.
J Med Genet ; 55(4): 233-239, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358271

RESUMO

Background Irish Travellers are an endogamous, nomadic, ethnic minority population mostly resident on the island of Ireland with smaller populations in Europe and the USA. High levels of consanguinity result in many rare autosomal recessive disorders. Due to founder effects and endogamy, most recessive disorders are caused by specific homozygous mutations unique to this population. Key clinicians and scientists with experience in managing rare disorders seen in this population have developed a de facto advisory service on differential diagnoses to consider when faced with specific clinical scenarios. Objective(s) To catalogue all known inherited disorders found in the Irish Traveller population. Methods We performed detailed literature and database searches to identify relevant publications and the disease mutations of known genetic disorders found in Irish Travellers. Results We identified 104 genetic disorders: 90 inherited in an autosomal recessive manner; 13 autosomal dominant and one a recurring chromosomal duplication. Conclusion We have collated our experience of inherited disorders found in the Irish Traveller population to make it publically available through this publication to facilitate a targeted genetic approach to diagnostics in this ethnic group.


Assuntos
Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/genética , Genética Populacional/classificação , Consanguinidade , Etnicidade/genética , Europa (Continente)/epidemiologia , Doenças Genéticas Inatas/classificação , Humanos , Irlanda/epidemiologia , Grupos Minoritários , Mutação , População Branca
17.
Am J Hum Genet ; 102(1): 175-187, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29276005

RESUMO

Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders.


Assuntos
Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Histona Desmetilases/genética , Histona-Lisina N-Metiltransferase/genética , Adolescente , Criança , Pré-Escolar , Feminino , Haploinsuficiência , Humanos , Masculino , Mutação
18.
Am J Hum Genet ; 101(6): 995-1005, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29198722

RESUMO

A recurrent de novo missense variant within the C-terminal Sin3-like domain of ZSWIM6 was previously reported to cause acromelic frontonasal dysostosis (AFND), an autosomal-dominant severe frontonasal and limb malformation syndrome, associated with neurocognitive and motor delay, via a proposed gain-of-function effect. We present detailed phenotypic information on seven unrelated individuals with a recurrent de novo nonsense variant (c.2737C>T [p.Arg913Ter]) in the penultimate exon of ZSWIM6 who have severe-profound intellectual disability and additional central and peripheral nervous system symptoms but an absence of frontonasal or limb malformations. We show that the c.2737C>T variant does not trigger nonsense-mediated decay of the ZSWIM6 mRNA in affected individual-derived cells. This finding supports the existence of a truncated ZSWIM6 protein lacking the Sin3-like domain, which could have a dominant-negative effect. This study builds support for a key role for ZSWIM6 in neuronal development and function, in addition to its putative roles in limb and craniofacial development, and provides a striking example of different variants in the same gene leading to distinct phenotypes.


Assuntos
Proteínas de Ligação a DNA/genética , Deficiência Intelectual/genética , Transtornos Neurocognitivos/genética , Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/embriologia , Códon sem Sentido/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deformidades Congênitas dos Membros/genética , Disostose Mandibulofacial/genética , Sistema Nervoso Periférico/anormalidades , Sistema Nervoso Periférico/enzimologia
19.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Fácies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
20.
Am J Hum Genet ; 101(5): 664-685, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100083

RESUMO

Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Mutação/genética , Criança , Pré-Escolar , Feminino , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Deficiência Intelectual/genética , Masculino , Recidiva , Convulsões/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...