Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Mol Immunol ; 170: 35-45, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613944

RESUMO

Microglia play a pivotal role in the pathology of Alzheimer's Disease (AD), with the Triggering Receptor Expressed on Myeloid cells 2 (TREM2) central to their neuroprotective functions. The R47H variant of TREM2 has emerged as a significant genetic risk factor for AD, leading to a loss-of-function phenotype in mouse AD models. This study elucidates the roles of TREM2 in human microglia-like HMC3 cells and the regulation of these functions by SH2-containing inositol-5'-phosphatase 1 (SHIP1). Using stable cell lines expressing wild-type TREM2, the R47H variant, and TREM2-deficient lines, we found that functional TREM2 is essential for the phagocytosis of Aß, lysosomal capacity, and mitochondrial activity. Notably, the R47H variant displayed increased phagocytic activity towards apoptotic neurons. Introducing SHIP1, known to modulate TREM2 signaling in other cells, revealed its role as a negative regulator of these TREM2-mediated functions. Moreover, pharmacological inhibition of both SHIP1 and its isoform SHIP2 amplified Aß phagocytosis and lysosomal capacity, independently of TREM2 or SHIP1 expression, suggesting a potential regulatory role for SHIP2 in these functions. The absence of TREM2, combined with the presence of both SHIP isoforms, suppressed mitochondrial activity. However, pan-SHIP1/2 inhibition enhanced mitochondrial function in these cells. In summary, our findings offer a deeper understanding of the relationship between TREM2 variants and SHIP1 in microglial functions, and emphasize the therapeutic potential of targeting the TREM2 and SHIP1 pathways in microglia for neurodegenerative diseases.


Assuntos
Glicoproteínas de Membrana , Microglia , Fagocitose , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Receptores Imunológicos , Animais , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apoptose/genética , Linhagem Celular , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Microglia/metabolismo , Mitocôndrias/metabolismo , Fagocitose/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais
2.
Molecules ; 28(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38138538

RESUMO

The SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1) enzyme opposes the activity of PI3K and therefore is of interest in the treatment of inflammatory disorders. Recent results also indicate that SHIP1 promotes phagolysosomal degradation of lipids by microglia, suggesting that the enzyme may be a target for the treatment of Alzheimer's disease. Therefore, small molecules that increase SHIP1 activity may have benefits in these areas. Recently we discovered a bis-sulfonamide that increases the enzymatic activity of SHIP1. A series of similar SHIP1 activators have been synthesized and evaluated to determine structure-activity relationships and improve in vivo stability. Some new analogs have now been found with improved potency. In addition, both the thiophene and the thiomorpholine in the parent structure can be replaced by groups without a low valent sulfur atom, which provides a way to access activators that are less prone to oxidative degradation.


Assuntos
Monoéster Fosfórico Hidrolases , Monoéster Fosfórico Hidrolases/metabolismo
3.
Cytokine ; 171: 156373, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37776719

RESUMO

Leishmania major and L. donovani cause cutaneous leishmaniasis and visceral leishmaniasis, respectively. Available chemotherapies suffer from toxicity, drug-resistance or high cost of production prompting the need for the discovery of new anti-leishmanials. Here, we test a novel aminosteriodal compound- 3-alpha-amino-cholestane [3AC] - that shows selective inhibition of SHIP1, an inositol-5'-phosphate-specific phosphatase with potent effects on the immune system. We report that 3AC-sensitive SHIP1 expression increases in Leishmania-infected macrophages. Treatment of BALB/c mice, a Leishmania-susceptible host, with 3AC increased anti-leishmanial, but reduced pro-leishmanial, cytokines' production and reduced the parasite load in both L. major and L. donovani infections. These findings implicate SHIPi as a potential novel immunostimulant with anti-leishmanial function.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Animais , Camundongos , Leishmaniose Visceral/tratamento farmacológico , Camundongos Endogâmicos BALB C
4.
iScience ; 26(2): 106071, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36818285

RESUMO

Here we extend the understanding of how chemical inhibition of SHIP paralogs controls obesity. We compare different classes of SHIP inhibitors and find that selective inhibitors of SHIP1 or SHIP2 are unable to prevent weight gain and body fat accumulation during increased caloric intake. Surprisingly, only pan-SHIP1/2 inhibitors (pan-SHIPi) prevent diet-induced obesity. We confirm that pan-SHIPi is essential by showing that dual treatment with SHIP1 and SHIP2 selective inhibitors reduced adiposity during excess caloric intake. Consistent with this, genetic inactivation of both SHIP paralogs in eosinophils or myeloid cells also reduces obesity and adiposity. In fact, pan-SHIPi requires an eosinophil compartment to prevent diet-induced adiposity, demonstrating that pan-SHIPi acts via an immune mechanism. We also find that pan-SHIPi increases ILC2 cell function in aged, obese mice to reduce their obesity. Finally, we show that pan-SHIPi also reduces hyperglycemia, but not via eosinophils, indicating a separate mechanism for glucose control.

5.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500543

RESUMO

Inhibition of phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP) with small molecule inhibitors leads to apoptosis in tumor cells. Inhibitors that target both SHIP1 and SHIP2 (pan-SHIP1/2 inhibitors) may have benefits in these areas since paralog compensation is not possible when both SHIP paralogs are being inhibited. A series of tryptamine-based pan-SHIP1/2 inhibitors have been synthesized and evaluated for their ability to inhibit the SHIP paralogs. The most active compounds were also evaluated for their effects on cancer cell lines.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fosforilação , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular
6.
Front Immunol ; 13: 830961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603158

RESUMO

Humans homozygous for inactivating LRBA (lipopolysaccharide (LPS)-responsive beige-like anchor) mutations or with compound heterozygous mutations exhibit a spectrum of immune-related pathologies including inflammatory bowel disease (IBD). The cause of this pathology remains undefined. Here we show that disruption of the colon epithelial barrier in LRBA-deficient mice by dextran sulfate sodium (DSS) consumption leads to severe and uniformly lethal colitis. Analysis of bone marrow (BM) chimeras showed that susceptibility to lethal colitis is primarily due to LRBA deficiency in the immune compartment and not the gut epithelium. Further dissection of the immune defect in LRBA-deficient hosts showed that LRBA is essential for the expression of CTLA4 by Treg cells and IL22 and IL17 expression by ILC3 cells in the large intestine when the gut epithelium is compromised by DSS. We further show that SHIP1 agonism partially abrogates the severity and lethality of DSS-mediated colitis. Our findings indicate that enteropathy induced by LRBA deficiency has multiple causes and that SHIP1 agonism can partially abrogate the inflammatory milieu in the gut of LRBA-deficient hosts.


Assuntos
Colite , Imunodeficiência de Variável Comum , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Colite/induzido quimicamente , Colite/genética , Camundongos , Mutação , Linfócitos T Reguladores
7.
Org Biomol Chem ; 20(19): 4016-4020, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506893

RESUMO

AQX-1125 is an indane based SHIP1 agonist that has been evaluated in the clinic for the treatment of bladder pain syndrome/interstitial cystitis. To support our own studies on SHIP1 agonists as potential treatments for IBD and Crohn's disease, a new synthetic route to the SHIP1 agonist AQX-1125 has been developed. This sequence utilizes a hydroxy-acid intermediate which allows for ready differentiation of the C6 and C7 positions. The role of the C17 alkene in the biological activity of the system is also investigated, and this functional group is not required for SHIP1 agonist activity. While AQX-1125 shows SHIP1 agonist activity in enzyme assays, it does not show activity in cell based assays similar to other SHIP1 agonists, which limits the utility of this molecule.


Assuntos
Cicloexanóis , Monoéster Fosfórico Hidrolases , Indanos
8.
iScience ; 25(4): 104170, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35465359

RESUMO

Here, we describe the use of artificial intelligence to identify novel agonists of the SH2-containing 5' inositol phosphatase 1 (SHIP1). One of the compounds, K306, represents the most potent agonist identified to date. We find that K306 exhibits selectivity for SHIP1 vs. the paralog enzyme SHIP2, and this activation does not require the C2 domain of SHIP1 which other known SHIP1 agonists require. Thus, K306 represents a new class of SHIP1 agonists with a novel mode of agonism. Importantly, we find that K306 can suppress induction of inflammatory cytokines and iNOS in macrophages or microglia, but not by their SHIP1-deficient counterparts. K306 also reduces TNF-α production in vivo in an LPS-induced endotoxemia assay. Finally, we show that K306 enhances phagolysosomal degradation of synaptosomes and dead neurons by microglia revealing a novel function for SHIP1 that might be exploited therapeutically in dementia.

9.
Sci Rep ; 11(1): 9220, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911168

RESUMO

Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP-1) regulates the intracellular levels of phosphotidylinositol-3, 4, 5-trisphosphate, a phosphoinositide 3-kinase (PI3K) product. Emerging evidence suggests that the PI3K pathway is involved in allergic inflammation in the lung. Germline or induced whole-body deletion of SHIP-1 in mice led to spontaneous type 2-dominated pulmonary inflammation, demonstrating that SHIP-1 is essential for lung homeostasis. However, the mechanisms by which SHIP-1 regulates lung inflammation and the responsible cell types are still unclear. Deletion of SHIP-1 selectively in B cells, T cells, dendritic cells (DC) or macrophages did not lead to spontaneous allergic inflammation in mice, suggesting that innate immune cells, particularly group 2 innate lymphoid cells (ILC2 cells) may play an important role in this process. We tested this idea using mice with deletion of SHIP-1 in the hematopoietic cell lineage and examined the changes in ILC2 cells. Conditional deletion of SHIP-1 in hematopoietic cells in Tek-Cre/SHIP-1 mice resulted in spontaneous pulmonary inflammation with features of type 2 immune responses and airway remodeling like those seen in mice with global deletion of SHIP-1. Furthermore, when compared to wild-type control mice, Tek-Cre/SHIP-1 mice displayed a significant increase in the number of IL-5/IL-13 producing ILC2 cells in the lung at baseline and after stimulation by allergen Papain. These findings provide some hints that PI3K signaling may play a role in ILC2 cell development at baseline and in response to allergen stimulation. SHIP-1 is required for maintaining lung homeostasis potentially by restraining ILC2 cells and type 2 inflammation.


Assuntos
Fibrose/patologia , Células-Tronco Hematopoéticas/patologia , Linfócitos/patologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/fisiologia , Pneumonia/patologia , Animais , Fibrose/etiologia , Células-Tronco Hematopoéticas/metabolismo , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papaína/toxicidade , Pneumonia/etiologia
10.
Cancers (Basel) ; 13(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672717

RESUMO

Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5' inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.

11.
Biochem Soc Trans ; 48(1): 291-300, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049315

RESUMO

Modulating the activity of the Src Homology 2 (SH2) - containing Inositol 5'-Phosphatase (SHIP) enzyme family with small molecule inhibitors provides a useful and unconventional method of influencing cell signaling in the PI3K pathway. The development of small molecules that selectively target one of the SHIP paralogs (SHIP1 or SHIP2) as well as inhibitors that simultaneously target both enzymes have provided promising data linking the phosphatase activity of the SHIP enzymes to disorders and disease states that are in dire need of new therapeutic targets. These include cancer, immunotherapy, diabetes, obesity, and Alzheimer's disease. In this mini-review, we will provide a brief overview of research in these areas that support targeting SHIP1, SHIP2 or both enzymes for therapeutic purposes.


Assuntos
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo
12.
FASEB J ; 34(2): 2011-2023, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31907997

RESUMO

Src Homology 2-containing Inositol Phosphatase-1 (SHIP-1) is a target of miR-155, a pro-inflammatory factor. Deletion of the SHIP-1 gene in mice caused spontaneous lung inflammation and fibrosis. However, the role and function of endothelial miR-155 and SHIP-1 in lung fibrosis remain unknown. Using whole-body miR-155 knockout mice and endothelial cell-specific conditional miR-155 (VEC-Cre-miR-155 or VEC-miR-155) or SHIP-1 (VEC-SHIP-1) knockout mice, we assessed endothelial-mesenchymal transition (EndoMT) and fibrotic responses in bleomycin (BLM) induced lung fibrosis models. Primary mouse lung endothelial cells (MLEC) and human umbilical vein endothelial cells (HUVEC) with SHIP-1 knockdown were analyzed in TGF-ß1 or BLM, respectively, induced fibrotic responses. Fibrosis and EndoMT were significantly reduced in miR-155KO mice and changes in EndoMT markers in MLEC after TGF-ß1 stimulation confirmed the in vivo findings. Furthermore, lung fibrosis and EndoMT responses were reduced in VEC-miR-155 mice but significantly enhanced in VEC-SHIP-1 mice after BLM challenge. SHIP-1 knockdown in HUVEC cells resulted in enhanced EndoMT induced by BLM. Meanwhile, these changes involved the PI3K/AKT, JAK/STAT3, and SMAD/STAT signaling pathways. These studies demonstrate that endothelial miR-155 plays an important role in fibrotic responses in the lung through EndoMT. Endothelial SHIP-1 is essential in controlling fibrotic responses and SHIP-1 is a target of miR-155. Endothelial cells are an integral part in lung fibrosis.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Fibrose Pulmonar/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
13.
J Immunol ; 204(2): 360-374, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31836657

RESUMO

Balanced activity of kinases and phosphatases downstream of the BCR is essential for B cell differentiation and function and is disturbed in chronic lymphocytic leukemia (CLL). In this study, we employed IgH.TEµ mice, which spontaneously develop CLL, and stable EMC CLL cell lines derived from these mice to explore the role of phosphatases in CLL. Genome-wide expression profiling comparing IgH.TEµ CLL cells with wild-type splenic B cells identified 96 differentially expressed phosphatase genes, including SH2-containing inositol phosphatase (Ship2). We found that B cell-specific deletion of Ship2, but not of its close homolog Ship1, significantly reduced CLL formation in IgH.TEµ mice. Treatment of EMC cell lines with Ship1/2 small molecule inhibitors resulted in the induction of caspase-dependent apoptosis. Using flow cytometry and Western blot analysis, we observed that blocking Ship1/2 abrogated EMC cell survival by exerting dual effects on the BCR signaling cascade. On one hand, specific Ship1 inhibition enhanced calcium signaling and thereby abrogated an anergic response to BCR stimulation in CLL cells. On the other hand, concomitant Ship1/Ship2 inhibition or specific Ship2 inhibition reduced constitutive activation of the mTORC1/ribosomal protein S6 pathway and downregulated constitutive expression of the antiapoptotic protein Mcl-1, in both EMC cell lines and primary IgH.TEµ CLL cells. Importantly, also in human CLL, we found overexpression of many phosphatases including SHIP2. Inhibition of SHIP1/SHIP2 reduced cellular survival and S6 phosphorylation and enhanced basal calcium levels in human CLL cells. Taken together, we provide evidence that SHIP2 contributes to CLL pathogenesis in mouse and human CLL.


Assuntos
Linfócitos B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética
14.
J Cell Sci ; 133(5)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31780579

RESUMO

We show here that both SHIP1 (Inpp5d) and its paralog SHIP2 (Inppl1) are expressed at protein level in microglia. To examine whether targeting of SHIP paralogs might influence microglial physiology and function, we tested the capacity of SHIP1-selective, SHIP2-selective and pan-SHIP1/2 inhibitors for their ability to impact on microglia proliferation, lysosomal compartment size and phagocytic function. We find that highly potent pan-SHIP1/2 inhibitors can significantly increase lysosomal compartment size, and phagocytosis of dead neurons and amyloid beta (Aß)1-42 by microglia in vitro We show that one of the more-potent and water-soluble pan-SHIP1/2 inhibitors, K161, can penetrate the blood-brain barrier. Consistent with this, K161 increases the capacity of CNS-resident microglia to phagocytose Aß and apoptotic neurons following systemic administration. These findings provide the first demonstration that small molecule modulation of microglia function in vivo is feasible, and suggest that dual inhibition of the SHIP1 and 2 paralogs can provide a novel means to enhance basal microglial homeostatic functions for therapeutic purposes in Alzheimer's disease and, possibly, other types of dementia where increased microglial function could be beneficial.


Assuntos
Doença de Alzheimer , Microglia , Peptídeos beta-Amiloides , Homeostase , Humanos , Fagocitose
15.
J Immunol ; 202(1): 11-19, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30587569

RESUMO

After decades of intense effort, therapeutics that leverage the immune system to fight cancer have now been conclusively demonstrated to be effective. Immuno-oncology has arrived and will play a key role in the treatment of cancer for the foreseeable future. However, the search for novel methods to improve immune responses to cancer continues unabated. Toward this end, small molecules that can either reduce immune suppression in the tumor milieu or enhance activation of cytotoxic lymphocyte responses to the tumor are actively being pursued. Such novel treatment strategies might be used as monotherapies or combined with other cancer therapies to increase and broaden their efficacy. In this article, we provide an overview of small molecule immunotherapeutic approaches for the treatment of cancer. Over the next decade and beyond, these approaches could further enhance our ability to harness the immune system to combat cancer and thus become additional weapons in the oncologist's armory.


Assuntos
Antineoplásicos/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Quimioterapia Combinada , Humanos , Tolerância Imunológica/efeitos dos fármacos , Imunização , Neoplasias/imunologia , Microambiente Tumoral/efeitos dos fármacos
16.
Cell Rep ; 25(5): 1118-1126, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380404

RESUMO

ß-Glucan-induced trained immunity in myeloid cells leads to long-term protection against secondary infections. Although previous studies have characterized this phenomenon, strategies to boost trained immunity remain undefined. We found that ß-glucan-trained macrophages from mice with a myeloid-specific deletion of the phosphatase SHIP-1 (LysMΔSHIP-1) showed enhanced proinflammatory cytokine production in response to lipopolysaccharide. Following ß-glucan training, SHIP-1-deficient macrophages exhibited increased phosphorylation of Akt and mTOR targets, correlating with augmented glycolytic metabolism. Enhanced training in the absence of SHIP-1 relied on histone methylation and acetylation. Trained LysMΔSHIP-1 mice produced increased amounts of proinflammatory cytokines upon rechallenge in vivo and were better protected against Candida albicans infection compared with control littermates. Pharmacological inhibition of SHIP-1 enhanced trained immunity against Candida infection in mouse macrophages and human peripheral blood mononuclear cells. Our data establish proof of concept for improvement of trained immunity and a strategy to achieve it by targeting SHIP-1.


Assuntos
Candidíase/enzimologia , Candidíase/imunologia , Imunidade , Células Mieloides/enzimologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , beta-Glucanas/farmacologia , Animais , Candida albicans/fisiologia , Candidíase/microbiologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores
17.
Front Immunol ; 9: 1100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29872435

RESUMO

In our previous study, we observed a severe reduction in the Src homology 2-containing-inositol-phosphatase-1 (SHIP1) protein in a subpopulation of subjects from a small adult Crohn's Disease (CD) cohort. This pilot study had been undertaken since we had previously demonstrated that engineered deficiency of SHIP1 in mice results in a spontaneous and severe CD-like ileitis. Here, we extend our analysis of SHIP1 expression in peripheral blood mononuclear cells in a second much larger adult Inflammatory Bowel Disease (IBD) cohort, comprised of both CD and Ulcerative Colitis patients, to assess contribution of SHIP1 to the pathogenesis of human IBD. SHIP1 protein and mRNA levels were evaluated from blood samples obtained from IBD subjects seen at UCSF/SFVA, and compared to healthy control samples. Western blot analyses revealed that ~15% of the IBD subjects are severely SHIP1-deficient, with less than 10% of normal SHIP1 protein present in PBMC. Further analyses by flow cytometry and sequencing were performed on secondary samples obtained from the same subjects. Pan-hematolymphoid SHIP1 deficiency was a stable phenotype and was not due to coding changes in the INPP5D gene. A very strong association between SHIP1 deficiency and the presence of a novel SHIP1:ATG16L1 fusion transcript was seen. Similar to SHIP1-deficient mice, SHIP1-deficient subjects had reduced numbers of circulating CD4+ T cell numbers. Finally, SHIP1-deficient subjects with CD had a history of severe disease requiring multiple surgeries. These studies reveal that the SHIP1 protein is crucial for normal T cell homeostasis in both humans and mice, and that it is also a potential therapeutic and/or diagnostic target in human IBD.


Assuntos
Doenças Inflamatórias Intestinais/etiologia , Contagem de Linfócitos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/deficiência , Linfócitos T/imunologia , Alelos , Animais , Proteínas Relacionadas à Autofagia/genética , Biomarcadores , Biologia Computacional/métodos , Doença de Crohn/sangue , Doença de Crohn/diagnóstico , Doença de Crohn/etiologia , Doença de Crohn/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Éxons , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Índice de Gravidade de Doença , Linfócitos T/metabolismo , Sequenciamento do Exoma
18.
Sci Signal ; 10(500)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018171

RESUMO

The success of immunotherapy in some cancer patients has revealed the profound capacity for cytotoxic lymphocytes to eradicate malignancies. Various immunotherapies work by blocking key checkpoint proteins that suppress immune cell activity. The phosphatase SHIP1 (SH2-containing inositol polyphosphate 5-phosphatase) limits signaling from receptors that activate natural killer (NK) cells and T cells. However, unexpectedly, genetic ablation studies have shown that the effector functions of SHIP1-deficient NK and T cells are compromised in vivo. Because chronic activation of immune cells renders them less responsive to activating signals (a host mechanism to avoid autoimmunity), we hypothesized that the failure of SHIP1 inhibition to induce antitumor immunity in those studies was caused by the permanence of genetic ablation. Accordingly, we found that reversible and pulsatile inhibition of SHIP1 with 3-α-aminocholestane (3AC; "SHIPi") increased the antitumor response of NK and CD8+ T cells in vitro and in vivo. Transient SHIP1 inhibition in mouse models of lymphoma and colon cancer improved the median and long-term tumor-free survival rates. Adoptive transfer assays showed evidence of immunological memory to the tumor in hematolymphoid cells from SHIPi-treated, long-term surviving mice. The findings suggest that a pulsatile regimen of SHIP1 inhibition might be an effective immunotherapy in some cancer patients.


Assuntos
Neoplasias do Colo/prevenção & controle , Células Matadoras Naturais/imunologia , Linfoma/prevenção & controle , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/fisiologia , Linfócitos T/imunologia , Animais , Neoplasias do Colo/imunologia , Neoplasias do Colo/mortalidade , Neoplasias do Colo/patologia , Genes Codificadores da Cadeia alfa de Receptores de Linfócitos T , Linfoma/imunologia , Linfoma/mortalidade , Linfoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/antagonistas & inibidores , Taxa de Sobrevida
19.
PLoS One ; 12(8): e0182308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767696

RESUMO

BACKGROUND: SH2 domain containing inositol-5-phosphatase (SHIP1) is an important modulator of innate and adaptive immunity. In mice, loss of SHIP1 provokes severe ileitis resembling Crohn's disease (CD), as a result of deregulated immune responses, altered cytokine production and intestinal fibrosis. Recently, SHIP1 activity was shown to be correlated to the presence of a CD-associated single nucleotide polymorphism in ATG16L1. Here, we studied SHIP1 activity and expression in an adult cohort of CD patients. METHODS: SHIP1 activity, protein and mRNA expression in peripheral blood mononuclear cells from CD patients in clinical remission were determined by Malachite green assay, Western blotting and qRT-PCR respectively. Genomic DNA was genotyped for ATG16L1 rs2241880. RESULTS: SHIP1 protein levels are profoundly diminished in a subset of patients; however, SHIP1 activity and expression are not correlated to ATG16L1 SNP status in this adult cohort. CONCLUSIONS: Aberrant SHIP1 activity can contribute to disease in a subset of adult CD patients, and warrants further investigation.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Doença de Crohn/genética , Regulação para Baixo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Polimorfismo de Nucleotídeo Único , Adulto , Linhagem Celular , Estudos de Coortes , Doença de Crohn/metabolismo , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Sci Rep ; 6: 36568, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824136

RESUMO

The PH-BEACH-WD40 (PBW) protein family members play a role in coordinating receptor signaling and intracellular vesicle trafficking. LPS-Responsive-Beige-like Anchor (LRBA) is a PBW protein whose immune function remains elusive. Here we show that LRBA-null mice are viable, but exhibit compromised rejection of allogeneic, xenogeneic and missing self bone-marrow grafts. Further, we demonstrate that LRBA-null Natural Killer (NK) cells exhibit impaired signaling by the key NK activating receptors, NKp46 and NKG2D. However, induction of IFN-γ by cytokines remains intact, indicating LRBA selectively facilitates signals by receptors for ligands expressed on the surface of NK targets. Surprisingly, LRBA limits immunoregulatory cell numbers in tissues where GvHD is primed or initiated, and consistent with this LRBA-null mice also demonstrate resistance to lethal GvHD. These findings demonstrate that LRBA is redundant for host longevity while being essential for both host and donor-mediated immune responses and thus represents a unique and novel molecular target in transplant immunology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/imunologia , Transdução de Sinais/imunologia , Imunologia de Transplantes , Proteínas Adaptadoras de Transdução de Sinal/genética , Aloenxertos , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...