Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-504128

RESUMO

Multivalent antigen display is a well-established design principle to enhance humoral immunity elicited by subunit vaccines. Protein-based virus-like particles (VLPs) are an important vaccine platform that implements this principle but also contain thymus-dependent off-target epitopes, thereby generating neutralizing and defocused antibody responses against the scaffold itself. Here, we present DNA origami as an alternative platform to display the receptor binding domain (RBD) of SARS-CoV-2. DNA-based scaffolds provide nanoscale control over antigen organization and, as thymus-independent antigens, are expected to induce only extrafollicular B-cell responses. Our icosahedral DNA-based VLPs elicited valency-dependent BCR signaling in two reporter B-cell lines, with corresponding increases in RBD-specific antibody responses following sequential immunization in mice. Mouse sera also neutralized the Wuhan strain of SARS-CoV-2--but did not contain boosted, DNA-specific antibodies. Thus, multivalent display using DNA origami can enhance immunogenicity of protein antigens without generating scaffold-directed immunological memory and may prove useful for rational vaccine design.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268586

RESUMO

The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals ([~]21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267179

RESUMO

Nursing home (NH) residents have experienced significant morbidity and mortality to SARS-CoV-2 throughout the pandemic. Vaccines initially curbed NH resident morbidity and mortality, but antibody levels and protection have declined with time since vaccination, prompting introduction of booster vaccination. This study assesses humoral immune response to booster vaccination in 85 NH residents and 44 health care workers (HCW) that we have followed longitudinally since initial SARS-CoV-2 BNT162b2 mRNA vaccination. The findings reveal that booster vaccination significantly increased anti-spike, anti-receptor binding domain, and neutralization titers above the pre-booster levels in almost all NH residents and HCW to significantly higher levels than shortly after the completion of the initial vaccine series. These data support the CDC recommendation to offer vaccine boosters to HCWs and NH residents on an immunological basis. Notably, even the older, more frail and more multi-morbid NH residents have sizable antibody increases with boosting.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262067

RESUMO

High COVID-19 mortality among nursing home (NH) residents led to their prioritization for SARS-CoV-2 vaccination; most NH residents received BNT162b2 mRNA vaccination under the Emergency Use Authorization due to first to market and its availability. With NH residents poor initial vaccine response, the rise of NH breakthrough infections and outbreaks, characterization of the durability of immunity to inform public health policy on the need for boosting is needed. We report on humoral immunity from 2 weeks to 6-months post-vaccination in 120 NH residents and 92 ambulatory healthcare worker controls with and without pre-vaccination SARS-CoV-2 infection. Anti-spike and anti-receptor binding domain (RBD) IgG, and serum neutralization titers, were assessed using a bead-based ELISA method and pseudovirus neutralization assay. Anti-spike, anti-RBD and neutralization levels dropped more than 84% over 6 months time in all groups irrespective of prior SARS-CoV-2 infection. At 6 months post-vaccine, 70% of the infection-naive NH residents had neutralization titers at or below the lower limit of detection compared to 16% at 2 weeks after full vaccination. These data demonstrate a significant reduction in levels of antibody in all groups. In particular, those infection-naive NH residents had lower initial post-vaccination humoral immunity immediately and exhibited the greatest declines 6 months later. Healthcare workers, given their younger age and relative good-health, achieved higher initial antibody levels and better maintained them, yet also experienced significant declines in humoral immunity. Based on the rapid spread of the delta variant and reports of vaccine breakthrough in NH and among younger community populations, boosting NH residents may be warranted.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260732

RESUMO

BackgroundUnderstanding immunogenicity and effectiveness of SARS-CoV-2 vaccines is critical to guide rational use. MethodsWe compared the immunogenicity of mRNA-1273, BNT-162b2 or Ad26.COV2.S in ambulatory adults in Massachusetts, USA. To correlate immunogenicity with effectiveness of the three vaccines, we performed an inverse-variance meta-analysis of population level effectiveness from public health reports in >40 million individuals. ResultsA single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently negative neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients, and <50% of vaccinees demonstrate CD8+ T-cell responses to spike peptides. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of beta, gamma and delta strains were poorer regardless of vaccine. Relative to mRNA1273, the effectiveness of BNT162b2 was lower against infection and hospitalization; and Ad26COV2.S was lower against infection, hospitalization and death. ConclusionsVariation in the immunogenicity correlates with variable effectiveness of the three FDA EUA vaccines deployed in the USA.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253920

RESUMO

The SARS-CoV-2 pandemic impact on nursing home (NH) residents prompted their prioritization for early vaccination. To fill the data gap for vaccine immunogenicity in NH residents, we examined antibody levels after BNT162b2 mRNA vaccine to spike, receptor binding domain (RBD) and for virus neutralization in 149 NH residents and 111 health care worker controls. SARS-CoV-2-naive NH residents mount antibody responses with nearly 4-fold lower median neutralization titers and half the anti-spike level compared to SARS-CoV-2-naive healthcare workers. By contrast, SARS-CoV-2-recovered vaccinated NH residents had neutralization, anti-spike and anti-RBD titers similar to SARS-CoV-2-recovered vaccinated healthcare workers. NH residents blunted antibody responses have important implications regarding the quality and durability of protection afforded by neoantigen vaccines. We urgently need better longitudinal evidence on vaccine effectiveness specific to NH resident populations to inform best practices for NH infection control measures, outbreak prevention and potential indication for a vaccine boost.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429458

RESUMO

Exposure to a pathogen elicits an adaptive immune response aimed to control and eradicate. Interrogating the abundance and specificity of the naive B cell repertoire contributes to understanding how to potentially elicit protective responses. Here, we isolated naive B cells from 8 seronegative human donors targeting the SARS-CoV-2 receptor-binding domain (RBD). Single B cell analysis showed diverse gene usage with no restricted complementarity determining region lengths. We show that recombinant antibodies engage SARS-CoV-2 RBD, circulating variants, and pre-emergent coronaviruses. Representative antibodies signal in a B cell activation assay and can be affinity matured through directed evolution. Structural analysis of a naive antibody in complex with spike shows a conserved mode of recognition shared with infection-induced antibodies. Lastly, both naive and affinity-matured antibodies can neutralize SARS-CoV-2. Understanding the naive repertoire may inform potential responses recognizing variants or emerging coronaviruses enabling the development of pan-coronavirus vaccines aimed at engaging germline responses. One Sentence SummaryIsolation of antibody germline precursors targeting the receptor binding domain of coronaviruses.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251704

RESUMO

Vaccination elicits immune responses capable of potently neutralizing SARS-CoV-2. However, ongoing surveillance has revealed the emergence of variants harboring mutations in spike, the main target of neutralizing antibodies. To understand the impact of globally circulating variants, we evaluated the neutralization potency of 48 sera from BNT162b2 and mRNA-1273 vaccine recipients against pseudoviruses bearing spike proteins derived from 10 strains of SARS-CoV-2. While multiple strains exhibited vaccine-induced cross-neutralization comparable to wild-type pseudovirus, 5 strains harboring receptor-binding domain mutations, including K417N/T, E484K, and N501Y, were highly resistant to neutralization. Cross-neutralization of B.1.351 variants was weak and comparable to SARS-CoV and bat-derived WIV1-CoV, suggesting that a relatively small number of mutations can mediate potent escape from vaccine responses. While the clinical impact of neutralization resistance remains uncertain, these results highlight the potential for variants to escape from neutralizing humoral immunity and emphasize the need to develop broadly protective interventions against the evolving pandemic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA