Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(23): 5393-5399.e3, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34739821

RESUMO

The frequency, intensity, and spatial scale of climate extremes are changing rapidly due to anthropogenic global warming.1,2 A growing research challenge is to understand how multiple climate-driven disturbances interact with each other over multi-decadal time frames, generating combined effects that cannot be predicted from single events alone.3-5 Here we examine the emergent dynamics of five coral bleaching events along the 2,300 km length of the Great Barrier Reef that affected >98% of the Reef between 1998 and 2020. We show that the bleaching responses of corals to a given level of heat exposure differed in each event and were strongly influenced by contingency and the spatial overlap and strength of interactions between events. Naive regions that escaped bleaching for a decade or longer were the most susceptible to bouts of heat exposure. Conversely, when pairs of successive bleaching episodes were close together (1-3 years apart), the thermal threshold for severe bleaching increased because the earlier event hardened regions of the Great Barrier Reef to further impacts. In the near future, the biological responses to recurrent bleaching events may become stronger as the cumulative geographic footprint expands further, potentially impairing the stock-recruitment relationships among lightly and severely bleached reefs with diverse recent histories. Understanding the emergent properties and collective dynamics of recurrent disturbances will be critical for predicting spatial refuges and cumulative ecological responses, and for managing the longer-term impacts of anthropogenic climate change on ecosystems.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Mudança Climática , Recifes de Corais , Ecossistema , Aquecimento Global
2.
Nature ; 568(7752): 387-390, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944475

RESUMO

Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages1-3. In marine systems, the production of larvae and recruitment of functionally important species are fundamental processes for rebuilding depleted adult populations, maintaining resilience and avoiding regime shifts in the face of rising environmental pressures4,5. Here we document a regional-scale shift in stock-recruitment relationships of corals along the Great Barrier Reef-the world's largest coral reef system-following unprecedented back-to-back mass bleaching events caused by global warming. As a consequence of mass mortality of adult brood stock in 2016 and 2017 owing to heat stress6, the amount of larval recruitment declined in 2018 by 89% compared to historical levels. For the first time, brooding pocilloporids replaced spawning acroporids as the dominant taxon in the depleted recruitment pool. The collapse in stock-recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs. The extent to which the Great Barrier Reef will be able to recover from the collapse in stock-recruitment relationships remains uncertain, given the projected increased frequency of extreme climate events over the next two decades7.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Recifes de Corais , Aquecimento Global , Animais , Austrália , Temperatura Alta/efeitos adversos , Larva/fisiologia , Incerteza
3.
Nature ; 556(7702): 492-496, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670282

RESUMO

Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Aquecimento Global , Animais , Antozoários/classificação , Austrália , Temperatura Alta/efeitos adversos , Dinâmica Populacional
4.
Science ; 359(6371): 80-83, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302011

RESUMO

Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño-Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.


Assuntos
Antozoários , Recifes de Corais , El Niño Oscilação Sul , Aquecimento Global , Animais , Água do Mar
5.
Mar Pollut Bull ; 125(1-2): 254-259, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28830627

RESUMO

Studies of shelter use can provide key insights into the ecology, and structural needs of mobile organisms. Using videos, we examined the usage of tabular corals by large reef fishes, over a 10week period, compared to multiple environmental drivers: visibility, tide (and depth), irradiance, wind speed (as a proxy for wave energy) and water temperature. We found that two of these predictor variables (visibility and wind speed) had a significant effect and together accounted for almost half of the variation in tabular coral usage by fishes. Increases in both variables correlated with increased shelter use. To date use of shelters by fishes has primarily been attributed to UV avoidance. Our results support this notion as more turbid conditions (reduced visibility) have an attenuating effect on UV irradiance. Additionally, tabular corals may reduce the energetic costs of increased wave energy by reducing incidental water velocity beneath the structure.


Assuntos
Recifes de Corais , Peixes/fisiologia , Animais , Antozoários , Comportamento Animal , Nefelometria e Turbidimetria , Temperatura , Raios Ultravioleta , Vento
6.
Nature ; 543(7645): 373-377, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300113

RESUMO

During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Assuntos
Antozoários/metabolismo , Recifes de Corais , Aquecimento Global/estatística & dados numéricos , Animais , Austrália , Clorofila/metabolismo , Clorofila A , Conservação dos Recursos Naturais/tendências , Aquecimento Global/prevenção & controle , Água do Mar/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...