Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6889, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898599

RESUMO

Noble metals supported on reducible oxides, like CoOx and TiOx, exhibit superior activity in many chemical reactions, but the origin of the increased activity is not well understood. To answer this question we studied thin films of CoOx supported on an Au(111) single crystal surface as a model for the CO oxidation reaction. We show that three reaction regimes exist in response to chemical and topographic restructuring of the CoOx catalyst as a function of reactant gas phase CO/O2 stoichiometry and temperature. Under oxygen-lean conditions and moderate temperatures (≤150 °C), partially oxidized films (CoOx<1) containing Co0 were found to be efficient catalysts. In contrast, stoichiometric CoO films containing only Co2+ form carbonates in the presence of CO that poison the reaction below 300 °C. Under oxygen-rich conditions a more oxidized catalyst phase (CoOx>1) forms containing Co3+ species that are effective in a wide temperature range. Resonant photoemission spectroscopy (ResPES) revealed the unique role of Co3+ sites in catalyzing the CO oxidation. Density function theory (DFT) calculations provided deeper insights into the pathway and free energy barriers for the reactions on these oxide phases. These findings in this work highlight the versatility of catalysts and their evolution to form different active phases, both topological and chemically, in response to reaction conditions exposing a new paradigm in the catalyst structure during operation.

3.
Faraday Discuss ; 236(0): 141-156, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35543196

RESUMO

Nanoparticle formation by dopant exsolution (migration) from bulk host lattices is a promising approach to generate highly stable nanoparticles with tunable size, shape, and distribution. We investigated Ni dopant migration from strontium titanate (STO) lattices, forming metallic Ni nanoparticles at STO surfaces. Ex situ scanning probe measurements confirmed the presence of nanoparticles at the H2 treated surface. In situ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) revealed reduction from Ni2+ to Ni0 as Ni dopants migrated to the surface during heating treatments in H2. During Ni migration and reduction, the Sr and Ti chemical states were mostly unchanged, indicating the selective reduction of Ni during treatment. At the same time, we used in situ ambient pressure grazing incidence X-ray scattering (GIXS) to monitor the particle morphology. As Ni migrated to the surface, it nucleated and grew into compressed spheroidal nanoparticles partially embedded in the STO perovskite surface. These findings provide a detailed picture of the evolution of the nanoparticle surface and subsurface chemical state and morphology as the nanoparticles grow beyond the initial nucleation and growth stages.

4.
Rev Sci Instrum ; 92(4): 044102, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243438

RESUMO

We have developed an experimental system to simultaneously measure surface structure, morphology, composition, chemical state, and chemical activity for samples in gas phase environments. This is accomplished by simultaneously measuring x-ray photoelectron spectroscopy (XPS) and grazing incidence x-ray scattering in gas pressures as high as the multi-Torr regime while also recording mass spectrometry. Scattering patterns reflect near-surface sample structures from the nano-scale to the meso-scale, and the grazing incidence geometry provides tunable depth sensitivity of structural measurements. Scattered x rays are detected across a broad range of angles using a newly designed pivoting-UHV-manipulator for detector positioning. At the same time, XPS and mass spectrometry can be measured, all from the same sample spot and under ambient conditions. To demonstrate the capabilities of this system, we measured the chemical state, composition, and structure of Ag-behenate on a Si(001) wafer in vacuum and in O2 atmosphere at various temperatures. These simultaneous structural, chemical, and gas phase product probes enable detailed insights into the interplay between the structure and chemical state for samples in gas phase environments. The compact size of our pivoting-UHV-manipulator makes it possible to retrofit this technique into existing spectroscopic instruments installed at synchrotron beamlines. Because many synchrotron facilities are planning or undergoing upgrades to diffraction limited storage rings with transversely coherent beams, a newly emerging set of coherent x-ray scattering experiments can greatly benefit from the concepts we present here.

5.
Nat Commun ; 11(1): 1844, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296065

RESUMO

Heterogeneous catalysts are complex materials with multiple interfaces. A critical proposition in exploiting bifunctionality in alloy catalysts is to achieve surface migration across interfaces separating functionally dissimilar regions. Herein, we demonstrate the enhancement of more than 104 in the rate of molecular hydrogen reduction of a silver surface oxide in the presence of palladium oxide compared to pure silver oxide resulting from the transfer of atomic hydrogen from palladium oxide islands onto the surrounding surface formed from oxidation of a palladium-silver alloy. The palladium-silver interface also dynamically restructures during reduction, resulting in silver-palladium intermixing. This study clearly demonstrates the migration of reaction intermediates and catalyst material across surface interfacial boundaries in alloys with a significant effect on surface reactivity, having broad implications for the catalytic function of bimetallic materials.

6.
J Am Chem Soc ; 142(18): 8312-8322, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281380

RESUMO

The reaction of CO and O2 with submonolayer and multilayer CoOx films on Pt(111), to produce CO2, was investigated at room temperature in the mTorr pressure regime. Using operando ambient pressure X-ray photoelectron spectroscopy and high pressure scanning tunneling microscopy, as well as density functional theory calculations, we found that the presence of oxygen vacancies in partially oxidized CoOx films significantly enhances the CO oxidation activity to form CO2 upon exposure to mTorr pressures of CO at room temperature. In contrast, CoO films without O-vacancies are much less active for CO2 formation at RT, and CO only adsorbed in the form of carbonate species that are stable up to 260 °C. On submonolayer CoOx islands, the carbonates form preferentially at island edges, deactivating the edge sites for CO2 formation, even while the reaction proceeds inside the islands. These results provide a detailed understanding of CO oxidation pathways on systems where noble metals such as Pt interact with reducible oxides.

7.
J Phys Chem B ; 122(2): 548-554, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28749680

RESUMO

Using ambient pressure X-ray photoelectron spectroscopy (APXPS) and high pressure scanning tunneling microscopy (HPSTM), we show that in equilibrium with 0.01-0.2 Torr of methanol vapor, at room temperature, the Cu(100) surface is covered with methoxy species forming a c(2 × 2) overlayer structure. In contrast, no methoxy is formed if the surface is saturated with an ordered oxygen layer, even when the methanol pressure is 0.2 Torr. At oxygen coverages below saturation, methanol dissociates and reacts with the atomic oxygen, producing methoxy and formate on the surface, and formaldehyde that desorbs to the gas phase. Unlike the case of pure carbon monoxide and carbon dioxide, methanol does not induce the restructuring of the Cu(100) surface. These results provide insight into catalytic anhydrous production of aldehydes.

8.
Nat Commun ; 8(1): 946, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038513

RESUMO

Kondo resonances in heterostructures formed by magnetic molecules on a metal require free host electrons to interact with the molecular spin and create delicate many-body states. Unlike graphene, semiconducting graphene nanoribbons do not have free electrons due to their large bandgaps, and thus they should electronically decouple molecules from the metal substrate. Here, we observe unusually well-defined Kondo resonances in magnetic molecules separated from a gold surface by graphene nanoribbons in vertically stacked heterostructures. Surprisingly, the strengths of Kondo resonances for the molecules on graphene nanoribbons appear nearly identical to those directly adsorbed on the top, bridge and threefold hollow sites of Au(111). This unexpectedly strong spin-coupling effect is further confirmed by density functional calculations that reveal no spin-electron interactions at this molecule-gold substrate separation if the graphene nanoribbons are absent. Our findings suggest graphene nanoribbons mediate effective spin coupling, opening a way for potential applications in spintronics.Semiconducting graphene nanoribbon provides a platform for band-gap engineering desired for electronic and optoelectronic applications. Here, Li et al. show that graphene nanoribbon can effectively mediate the interaction of molecular magnetic moment and electronic spin in underlying metallic substrates.

9.
Langmuir ; 32(15): 3587-600, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26991048

RESUMO

9-(Bis-p-tert-octylphenyl)-amino-perylene-3,4-dicarboxy anhydride (BOPA-PDCA) is a strongly dipolar molecule representing a group of asymmetrically substituted perylenes that are employed in dye-sensitized solar cells and hold great promise for discotic liquid crystal applications. Thin BOPA-PDCA films with orientated dipole moments can potentially be used to tune the energy-level alignment in electronic devices and store information. To help assessing these prospects, we here elucidate the molecular self-assembly and electronic structure of BOPA-PCDA employing room temperature scanning tunneling microscopy and spectroscopy in combination with ultraviolet and X-ray photoelectron spectroscopies. BOPA-PCDA monolayers on Au(111) exclusively form in-plane antiferroelectric phases. The molecular arrangements, the increase of the average number of molecules per unit cell via ripening, and the rearrangement upon manipulation with the STM tip indicate an influence of the dipole moment on the molecular assembly and the rearrangement. A slightly preferred out-of-plane orientation of the molecules in the multilayer induces a surface potential of 1.2 eV. This resembles the giant surface potential effect that was reported for vacuum-deposited tris(8-hydroxyquinoline)aluminum and deemed applicable for data storage. Notably, the surface potential in the case of BOPA-PDCA can in part be reversibly removed by visible light irradiation.

10.
J Synchrotron Radiat ; 23(2): 574-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917146

RESUMO

Localized spectroscopy with simultaneous topographic, elemental and magnetic information is presented. A synchrotron X-ray scanning tunneling microscope has been employed for the local study of the X-ray magnetic circular dichroism at the Fe L2,3-edges of a thin iron film grown on Cu(111). Polarization-dependent X-ray absorption spectra have been obtained through a tunneling smart tip that serves as a photoelectron detector. In contrast to conventional spin-polarized scanning tunneling microscopy, X-ray excitations provide magnetic contrast even with a non-magnetic tip. Intensity variations in the photoexcited tip current point to chemical variations within a single magnetic Fe domain.

11.
Nano Lett ; 14(11): 6499-504, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25275823

RESUMO

By using synchrotron X-rays as a probe and a nanofabricated smart tip of a tunneling microscope as a detector, we have achieved chemical fingerprinting of individual nickel clusters on a Cu(111) surface at 2 nm lateral resolution, and at the ultimate single-atomic height sensitivity. Moreover, by varying the photon energy, we have succeeded to locally measure photoionization cross sections of just a single Ni nanocluster, which opens new exciting opportunities for chemical imaging of nanoscale materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...