Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 121(11): 4372-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21985783

RESUMO

Huntington disease (HD) is a devastating autosomal-dominant neurodegenerative disorder. It is caused by expansion of a CAG repeat in the first exon of the huntingtin (HTT) gene that encodes a mutant HTT protein with a polyglutamine (polyQ) expansion at the amino terminus. Here, we demonstrate that WT HTT regulates ciliogenesis by interacting through huntingtin-associated protein 1 (HAP1) with pericentriolar material 1 protein (PCM1). Loss of Htt in mouse cells impaired the retrograde trafficking of PCM1 and thereby reduced primary cilia formation. In mice, deletion of Htt in ependymal cells led to PCM1 mislocalization, alteration of the cilia layer, and hydrocephalus. Pathogenic polyQ expansion led to centrosomal accumulation of PCM1 and abnormally long primary cilia in mouse striatal cells. PCM1 accumulation in ependymal cells was associated with longer cilia and disorganized cilia layers in a mouse model of HD and in HD patients. Longer cilia resulted in alteration of the cerebrospinal fluid flow. Thus, our data indicate that WT HTT is essential for protein trafficking to the centrosome and normal ciliogenesis. In HD, hypermorphic ciliogenesis may affect signaling and neuroblast migration so as to dysregulate brain homeostasis and exacerbate disease progression.


Assuntos
Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Centrossomo/metabolismo , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Modelos Animais de Doenças , Humanos , Proteína Huntingtina , Doença de Huntington/patologia , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Peptídeos/genética , Transdução de Sinais , Expansão das Repetições de Trinucleotídeos
2.
Neuron ; 67(3): 392-406, 2010 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-20696378

RESUMO

Huntingtin is the protein mutated in Huntington's disease, a devastating neurodegenerative disorder. We demonstrate here that huntingtin is essential to control mitosis. Huntingtin is localized at spindle poles during mitosis. RNAi-mediated silencing of huntingtin in cells disrupts spindle orientation by mislocalizing the p150(Glued) subunit of dynactin, dynein, and the large nuclear mitotic apparatus NuMA protein. This leads to increased apoptosis following mitosis of adherent cells in vitro. In vivo inactivation of huntingtin by RNAi or by ablation of the Hdh gene affects spindle orientation and cell fate of cortical progenitors of the ventricular zone in mouse embryos. This function is conserved in Drosophila, the specific disruption of Drosophila huntingtin in neuroblast precursors leading to spindle misorientation. Moreover, Drosophila huntingtin restores spindle misorientation in mammalian cells. These findings reveal an unexpected role for huntingtin in dividing cells, with potential important implications in health and disease.


Assuntos
Proteínas Associadas aos Microtúbulos/fisiologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fuso Acromático/fisiologia , Animais , Crescimento Celular , Células Cultivadas , Proteínas de Drosophila , Drosophila melanogaster , Células HeLa , Humanos , Proteína Huntingtina , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/deficiência , Microtúbulos/fisiologia
3.
Mol Brain ; 3: 17, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20515468

RESUMO

BACKGROUND: Huntingtin (htt) is a multi-domain protein of 350 kDa that is mutated in Huntington's disease (HD) but whose function is yet to be fully understood. This absence of information is due in part to the difficulty of manipulating large DNA fragments by using conventional molecular cloning techniques. Consequently, few studies have addressed the cellular function(s) of full-length htt and its dysfunction(s) associated with the disease. RESULTS: We describe a flexible synthetic vector encoding full-length htt called pARIS-htt (Adaptable, RNAi Insensitive &Synthetic). It includes synthetic cDNA coding for full-length human htt modified so that: 1) it is improved for codon usage, 2) it is insensitive to four different siRNAs allowing gene replacement studies, 3) it contains unique restriction sites (URSs) dispersed throughout the entire sequence without modifying the translated amino acid sequence, 4) it contains multiple cloning sites at the N and C-ter ends and 5) it is Gateway compatible. These modifications facilitate mutagenesis, tagging and cloning into diverse expression plasmids. Htt regulates dynein/dynactin-dependent trafficking of vesicles, such as brain-derived neurotrophic factor (BDNF)-containing vesicles, and of organelles, including reforming and maintenance of the Golgi near the cell centre. We used tests of these trafficking functions to validate various pARIS-htt constructs. We demonstrated, after silencing of endogenous htt, that full-length htt expressed from pARIS-htt rescues Golgi apparatus reformation following reversible microtubule disruption. A mutant form of htt that contains a 100Q expansion and a htt form devoid of either HAP1 or dynein interaction domains are both unable to rescue loss of endogenous htt. These mutants have also an impaired capacity to promote BDNF vesicular trafficking in neuronal cells. CONCLUSION: We report the validation of a synthetic gene encoding full-length htt protein that will facilitate analyses of its structure/function. This may help provide relevant information about the cellular dysfunctions operating during the disease. As proof of principle, we show that either polyQ expansion or deletion of key interacting domains within full-length htt protein impairs its function in transport indicating that HD mutation induces defects on intrinsic properties of the protein and further demonstrating the importance of studying htt in its full-length context.


Assuntos
Vetores Genéticos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Complexo Dinactina , Dineínas/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Proteína Huntingtina , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Manosidases/genética , Manosidases/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Estrutura Terciária de Proteína , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Development ; 133(1): 129-39, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16319114

RESUMO

Molecular motors transport the axis-determining mRNAs oskar, bicoid and gurken along microtubules (MTs) in the Drosophila oocyte. However, it remains unclear how the underlying MT network is organized and how this transport takes place. We have identified a centriole-containing centrosome close to the oocyte nucleus. Remarkably, the centrosomal components, gamma-tubulin and Drosophila pericentrin-like protein also strongly accumulate at the periphery of this nucleus. MT polymerization after cold-induced disassembly in wild type and in gurken mutants suggests that in the oocyte the centrosome-nucleus complex is an active center of MT polymerization. We further report that the MT network comprises two perpendicular MT subsets that undergo dynamic rearrangements during oogenesis. This MT reorganization parallels the successive steps in localization of gurken and oskar mRNAs. We propose that in addition to a highly polarized microtubule scaffold specified by the cortex oocyte, the repositioning of the nucleus and its tightly associated centrosome could control MT reorganization and, hence, oocyte polarization.


Assuntos
Núcleo Celular/fisiologia , Polaridade Celular/fisiologia , Centrossomo/fisiologia , Drosophila/fisiologia , Microtúbulos/fisiologia , Oócitos/citologia , Animais , Transporte Biológico/fisiologia , Proteínas de Drosophila/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Oócitos/fisiologia , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador alfa/metabolismo
5.
J Immunol ; 175(12): 7811-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16339516

RESUMO

T cell migration represents a complex highly coordinated process involving participation of surface receptor/ligand interactions, cytoskeletal rearrangements, and phosphorylation-dependent signaling cascades. Members of the A-kinase anchoring protein (AKAP) family of giant scaffolding proteins can assemble and compartmentalize multiple signaling and structural molecules thereby providing a platform for their targeted positioning and efficient interactions. We characterize here the expression, intracellular distribution, and functional role of the scaffolding protein CG-NAP (centrosome and Golgi localized protein kinase N-associated protein)/AKAP450 in the process of active T cell motility induced via LFA-1 integrins. This protein is predominantly localized at the centrosome and Golgi complex. T cell locomotion triggered by LFA-1 ligation induces redistribution of CG-NAP/AKAP450 along microtubules in trailing cell extensions. Using an original in situ immunoprecipitation approach, we show that CG-NAP/AKAP450 is physically associated with LFA-1 in the multimolecular signaling complex also including tubulin and the protein kinase C beta and delta isoenzymes. CG-NAP/AKAP450 recruitment to this complex was specific for the T cells migrating on LFA-1 ligands, but not on the beta(1) integrin ligand fibronectin. Using the GFP-tagged C-terminal CG-NAP/AKAP450 construct, we demonstrate that expression of the intact CG-NAP/AKAP450 and its recruitment to the LFA-1-associated multimolecular complex is critically important for polarization and migration of T cells induced by this integrin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Quimiotaxia de Leucócito , Proteínas do Citoesqueleto/fisiologia , Antígeno-1 Associado à Função Linfocitária/fisiologia , Proteínas de Ancoragem à Quinase A , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Centrossomo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Complexo de Golgi/metabolismo , Humanos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Microtúbulos/metabolismo , Complexos Multiproteicos/fisiologia , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/fisiologia
6.
Biol Cell ; 97(6): 425-34, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15898952

RESUMO

BACKGROUND INFORMATION: Centrosome movements at the onset of mitosis result from a balance between the pulling and pushing forces mediated by microtubules. The structural stability of the centrosome core structure, the centriole pair, is correlated with a heavy polyglutamylation of centriole tubulin. RESULTS: Using HeLa cells stably expressing centrin-green fluorescent protein as a centriole marker, we monitored the effect of microinjecting an anti-(polyglutamylated tubulin) monoclonal antibody, GT335, in G1/S or G2 cells. In contrast with the slow effect of the monoclonal antibody GT335 during interphase, a dramatic and rapid centrosome fragmentation occurred in cells microinjected in G2 that was both Eg5- and dynein-dependent. Inhibition of either one of these two motors significantly decreased the scattering of centrosome fragments, and inhibition of centrosome segregation by impairing microtubule dynamics abolished centrosome fragmentation. CONCLUSIONS: Our results demonstrate that the compact structure of the mitotic centrosome is capable of absorbing most of the pulling and pushing forces during G2/M transition and suggest that centrosomes could act as mechanosensors integrating tensions during cell division.


Assuntos
Centríolos/ultraestrutura , Anticorpos Monoclonais/química , Ciclo Celular , Divisão Celular , Centríolos/metabolismo , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Dineínas/metabolismo , Fase G1 , Fase G2 , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Microscopia de Fluorescência , Microscopia de Vídeo , Modelos Biológicos , Proteínas Motores Moleculares , Peptídeos/química , Fase S , Fatores de Tempo , Tubulina (Proteína)/química
7.
Cell Signal ; 17(9): 1158-73, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15905070

RESUMO

We employ a novel, dominant negative approach to identify a key role for certain tethered cyclic AMP specific phosphodiesterase-4 (PDE4) isoforms in regulating cyclic AMP dependent protein kinase A (PKA) sub-populations in resting COS1 cells. A fraction of PKA is clearly active in resting COS1 cells and this activity increases when cells are treated with the selective PDE4 inhibitor, rolipram. Point mutation of a critical, conserved aspartate residue in the catalytic site of long PDE4A4, PDE4B1, PDE4C2 and PDE4D3 isoforms renders them catalytically inactive. Overexpressed in resting COS1 cells, catalytically inactive forms of PDE4C2 and PDE4D3, but not PDE4A4 and PDE4B1, are constitutively PKA phosphorylated while overexpressed active versions of all these isoforms are not. Inactive and active versions of all these isoforms are PKA phosphorylated in cells where protein kinase A is maximally activated with forskolin and IBMX. By contrast, rolipram challenge of COS1 cells selectively triggers the PKA phosphorylation of recombinant, active PDE4D3 and PDE4C2 but not recombinant, active PDE4A4 and PDE4B1. Purified, recombinant PDE4D3 and PDE4A4 show a similar dose-dependency for in vitro phosphorylation by PKA. Disruption of the tethering of PKA type-II to PKA anchor proteins (AKAPs), achieved using the peptide Ht31, prevents inactive forms of PDE4C2 and PDE4D3 being constitutively PKA phosphorylated in resting cells as does siRNA-mediated knockdown of PKA-RII, but not PKA-RI. PDE4C2 and PDE4D3 co-immunoprecipitate from COS1 cell lysates with 250 kDa and 450 kDa AKAPs that tether PKA type-II and not PKA type-I. PKA type-II co-localises with AKAP450 in the centrosomal region of COS1 cells. The perinuclear distribution of recombinant, inactive PDE4D3, but not inactive PDE4A4, overlaps with AKAP450 and PKA type-II. The distribution of PKA phosphorylated inactive PDE4D3 also overlaps with that of AKAP450 in the centrosomal region of COS1 cells. We propose that a novel role for PDE4D3 and PDE4C2 is to gate the activation of AKAP450-tethered PKA type-II localised in the perinuclear region under conditions of basal cAMP generation in resting cells.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrossomo/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/biossíntese , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Células COS , Chlorocebus aethiops , Proteína Quinase Tipo II Dependente de AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Ativação Enzimática , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Mutação , Inibidores de Fosfodiesterase/farmacologia , Interferência de RNA , Rolipram/farmacologia
8.
Mol Biol Cell ; 14(10): 4260-71, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14517334

RESUMO

The small Ran GTPase, a key regulator of nucleocytoplasmic transport, is also involved in microtubule assembly and nuclear membrane formation. Herein, we show by immunofluorescence, immunoelectron microscopy, and biochemical analysis that a fraction of Ran is tightly associated with the centrosome throughout the cell cycle. Ran interaction with the centrosome is mediated by the centrosomal matrix A kinase anchoring protein (AKAP450). Accordingly, when AKAP450 is delocalized from the centrosome, Ran is also delocalized, and as a consequence, microtubule regrowth or anchoring is altered, despite the persisting association of gamma-tubulin with the centrosome. Moreover, Ran is recruited to Xenopus sperm centrosome during its activation for microtubule nucleation. We also demonstrate that centrosomal proteins such as centrin and pericentrin, but not gamma-tubulin, AKAP450, or ninein, undertake a nucleocytoplasmic exchange as they concentrate in the nucleus upon export inhibition by leptomycin B. Together, these results suggest a challenging possibility, namely, that centrosome activity could depend upon nucleocytoplasmic exchange of centrosomal proteins and local Ran-dependent concentration at the centrosome.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Centrossomo/metabolismo , Proteínas do Citoesqueleto , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteínas de Ancoragem à Quinase A , Antígenos/metabolismo , Fracionamento Celular , Clonagem Molecular , Ácidos Graxos Insaturados/farmacologia , Imunofluorescência , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Microscopia Imunoeletrônica , Modelos Moleculares , Transporte Proteico , Combinação Trimetoprima e Sulfametoxazol/metabolismo , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
9.
Mol Biol Cell ; 14(6): 2436-46, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12808041

RESUMO

Centrosomes provide docking sites for regulatory molecules involved in the control of the cell division cycle. The centrosomal matrix contains several proteins, which anchor kinases and phosphatases. The large A-Kinase Anchoring Protein AKAP450 is acting as a scaffolding protein for other components of the cell signaling machinery. We selectively perturbed the centrosome by modifying the cellular localization of AKAP450. We report that the expression in HeLa cells of the C terminus of AKAP450, which contains the centrosome-targeting domain of AKAP450 but not its coiled-coil domains or binding sites for signaling molecules, leads to the displacement of the endogenous centrosomal AKAP450 without removing centriolar or pericentrosomal components such as centrin, gamma-tubulin, or pericentrin. The centrosomal protein kinase A type II alpha was delocalized. We further show that this expression impairs cytokinesis and increases ploidy in HeLa cells, whereas it arrests diploid RPE1 fibroblasts in G1, thus further establishing a role of the centrosome in the regulation of the cell division cycle. Moreover, centriole duplication is interrupted. Our data show that the association between centrioles and the centrosomal matrix protein AKAP450 is critical for the integrity of the centrosome and for its reproduction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Ciclo Celular/fisiologia , Centríolos/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ancoragem à Quinase A , Proteínas de Transporte/biossíntese , Divisão Celular , Proteína Quinase Tipo II Dependente de AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Poliploidia , Estrutura Terciária de Proteína
10.
J Biol Chem ; 278(3): 1991-7, 2003 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-12419802

RESUMO

Studies of RII alpha-deficient B lymphoid cells and stable transfectants expressing the type II alpha regulatory subunit (RII alpha) of cAMP-dependent protein kinase (PKA), which is targeted to the Golgi-centrosomal area, reveal that the presence of a Golgi-associated pool of PKA type II alpha mediates a change in intracellular transport of the plant toxin ricin. The transport of ricin from endosomes to the Golgi apparatus, measured as sulfation of a modified ricin (ricin sulf-1), increased in RII alpha-expressing cells when PKA was activated. However, not only endosome-to-Golgi transport, but also retrograde ricin transport to the endoplasmic reticulum (ER), measured as sulfation and N-glycosylation of another modified ricin (ricin sulf-2), seemed to be increased in cells expressing RII alpha in the presence of a cAMP analog, 8-(4-chlorophenylthio)-cAMP. Thus, PKA type II alpha seems to be involved in both endosome-to-Golgi and Golgi-to-ER transport. Because ricin, after being retrogradely transported to the ER, is translocated to the cytosol, where it inhibits protein synthesis, we also investigated the influence of RII alpha expression on ricin toxicity. In agreement with the other data obtained, 8-(4-chlorophenylthio)-cAMP and RII alpha were found to sensitize cells to ricin, indicating an increased transport of ricin to the cytosol. In conclusion, our results demonstrate that transport of ricin from endosomes to the Golgi apparatus and further to the ER is regulated by PKA type II alpha isozyme.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Linfócitos B/enzimologia , Linfócitos B/metabolismo , Transporte Biológico , Linhagem Celular , Proteína Quinase Tipo II Dependente de AMP Cíclico , Glicosilação , Humanos , Ricina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...