Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 14(6): 7398-7411, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32383856

RESUMO

Release of cargo molecules from cell-like nanocarriers can be achieved by chemical perturbations, including changes to pH and redox state and via optical modulation of membrane properties. However, little is known about the kinetics or products of vesicle breakdown due to limitations in real-time imaging at nanometer length scales. Using a library of 12 single-single type photocleavable amphiphilic Janus dendrimers, we developed a self-assembling light-responsive dendrimersome vesicle platform. A photocleavable ortho-nitrobenzyl inserted between the hydrophobic and hydrophilic dendrons of amphiphilic Janus dendrimers allowed for photocleavage and disassembly of their supramolecular assemblies. Distinct methods used to self-assemble amphiphilic Janus dendrimers produced either nanometer size small unilamellar vesicles or micron size giant multilamellar and onion-like dendrimersomes. In situ observation of giant photosensitive dendrimersomes via confocal microscopy elucidated rapid morphological transitions that accompany vesicle breakdown upon 405 nm laser illumination. Giant dendrimersomes displayed light-induced cleavage, disassembling and reassembling into much smaller vesicles at millisecond time scales. Additionally, photocleavable vesicles demonstrated rapid release of molecular and macromolecular cargos. These results guided our design of multilamellar particles to photorelease surface-attached proteins, photoinduce cargo recruitment, and photoconvert vesicle morphology. Real-time characterization of the breakdown and reassembly of lamellar structures provides insights on partial cargo retention and informs the design of versatile, optically regulated carriers for applications in nanoscience and synthetic biology.

2.
Proc Natl Acad Sci U S A ; 116(12): 5376-5382, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819900

RESUMO

Self-assembling dendrimers have facilitated the discovery of periodic and quasiperiodic arrays of supramolecular architectures and the diverse functions derived from them. Examples are liquid quasicrystals and their approximants plus helical columns and spheres, including some that disregard chirality. The same periodic and quasiperiodic arrays were subsequently found in block copolymers, surfactants, lipids, glycolipids, and other complex molecules. Here we report the discovery of lamellar and hexagonal periodic arrays on the surface of vesicles generated from sequence-defined bicomponent monodisperse oligomers containing lipid and glycolipid mimics. These vesicles, known as glycodendrimersomes, act as cell-membrane mimics with hierarchical morphologies resembling bicomponent rafts. These nanosegregated morphologies diminish sugar-sugar interactions enabling stronger binding to sugar-binding proteins than densely packed arrangements of sugars. Importantly, this provides a mechanism to encode the reactivity of sugars via their interaction with sugar-binding proteins. The observed sugar phase-separated hierarchical arrays with lamellar and hexagonal morphologies that encode biological recognition are among the most complex architectures yet discovered in soft matter. The enhanced reactivity of the sugar displays likely has applications in material science and nanomedicine, with potential to evolve into related technologies.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Biomimética/métodos , Dendrímeros/química , Glicolipídeos/química , Lipídeos/química , Nanomedicina/métodos , Açúcares/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...