Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616061

RESUMO

Regular water quality measurements are essential to the public water supply. Moreover, selective free chlorine (disinfectant) level monitoring without an interfering agent is necessary. The present work aimed to fabricate poly(caffeic acid) (p-CFA) coated on an electrochemically reduced graphene oxide (ERGO) surface for the selective detection of free chlorine. Electron microscopy and various spectroscopic techniques confirmed the p-CFA@ERGO/glassy carbon (GC) electrode. The p-CFA@ERGO/GC coated probe surface coverage was calculated to be 4.75 × 10-11 mol cm-2. The p-CFA@ERGO/GC showed superior catechol/o-quinone oxidation/reduction peaks for electrocatalytic free chlorine determination. The performance of the developed sensor electrode was outstanding, with an extensive range of free chlorine detection (20 µM to 20 mM), high sensitivity (0.0361 µA µM-1), and low detection limit (0.03 µM). The p-CFA@ERGO/GC capability of the realist water samples, such as the tested commercial and tap water, yielded a good range of recovery (from 98.5% to 99.9%). These values align with the standard N,N'-diethyl-p-phenylenediamine reagent method results.

2.
J Colloid Interface Sci ; 530: 361-371, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29982029

RESUMO

This paper reports a facile solvothermal method for the synthesis of Bi2S3 flower-like nanostructures grown in situ on a nitrogen-doped reduced graphene oxide (Bi2S3@N-G) surface. Thiourea was used as the nitrogen source and reducing agent for graphene oxide. The surface morphology of the as-prepared Bi2S3@N-G composites was analyzed by field emission scanning electron microscopy and transmission electron microscopy. The crystalline structure and surface chemical states were examined by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The as-prepared Bi2S3@N-G composite was deposited on a glassy carbon (GC) electrode, and the modified electrode was employed for the electrocatalytic detection of H2O2. The calculated diffusion coefficient and catalytic rate constant of the Bi2S3@N-G modified electrode were 4.9 × 10-6 cm2 s-1 and 5671 M-1 s-1, respectively. The Bi2S3@N-G/GC electrode demonstrated a wide concentration range for H2O2, from 10 to 42,960 µM, with a sensitivity of 0.1535 µA µM-1 and an obtained limit of detection of 1.9 µM.

3.
Sci Rep ; 8(1): 7996, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789563

RESUMO

The moisture content of beetroot varies during long-term cold storage. In this work, we propose a strategy to identify the moisture content and age of beetroot using principal component analysis coupled Fourier transform infrared spectroscopy (FTIR). Frequent FTIR measurements were recorded directly from the beetroot sample surface over a period of 34 days for analysing its moisture content employing attenuated total reflectance in the spectral ranges of 2614-4000 and 1465-1853 cm-1 with a spectral resolution of 8 cm-1. In order to estimate the transmittance peak height (T p ) and area under the transmittance curve [Formula: see text] over the spectral ranges of 2614-4000 and 1465-1853 cm-1, Gaussian curve fitting algorithm was performed on FTIR data. Principal component and nonlinear regression analyses were utilized for FTIR data analysis. Score plot over the ranges of 2614-4000 and 1465-1853 cm-1 allowed beetroot quality discrimination. Beetroot quality predictive models were developed by employing biphasic dose response function. Validation experiment results confirmed that the accuracy of the beetroot quality predictive model reached 97.5%. This research work proves that FTIR spectroscopy in combination with principal component analysis and beetroot quality predictive models could serve as an effective tool for discriminating moisture content in fresh, half and completely spoiled stages of beetroot samples and for providing status alerts.


Assuntos
Beta vulgaris/química , Análise de Alimentos , Qualidade dos Alimentos , Água/análise , Análise de Alimentos/métodos , Análise de Alimentos/estatística & dados numéricos , Contaminação de Alimentos/análise , Conservação de Alimentos , Humanos , Análise de Componente Principal , Controle de Qualidade , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Mater Sci Eng C Mater Biol Appl ; 85: 97-106, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407162

RESUMO

An electrode comprised of a polydiaminobenzene (p-DAB) film formed on electrochemically reduced graphene oxide (ERGO) on a glassy carbon (GC) (p-DAB@ERGO/GC) was fabricated using a potentiodynamic method for the sensitive and selective determination of nitrite in the presence of a common interference. The p-DAB@ERGO/GC film-modified electrode surfaces were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The film fabrication was initiated via the NH2 groups of DAB, which was confirmed by XPS from the peaks corresponding to NH (396.7eV), NH (399.4eV), NN (400.2eV), and N+H (402.2eV). The Raman spectra revealed the characteristic D and G bands at 1348 and 1595cm-1, respectively, which confirmed the fabrication of GO on the GC electrode, and the ratio of the D and G bands was increased after the electrochemical reduction of GO. The surface coverage of the modified electrode was 8.16×10-11molcm-2. The p-DAB@ERGO/GC film-modified electrode was used successfully for the determination of nitrite ions. The p-DAB@ERGO/GC film-modified electrode exhibited superior activity for the determination of nitrite compared to the bare GC and p-DAB@GC electrodes. The amperometric current increased linearly with increasing nitrite concentration from 7.0×10-6 to 2.0×10-2M. The detection limit was 30nM (S/N=3). In addition, the modified electrode was used successfully to determine the nitrite ion concentration in the presence of a 100-fold excess of common interferents. The practical application of the modified electrode was demonstrated by determining the nitrite ion concentration in water samples.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Nitritos/análise , Fenilenodiaminas/química , Água/química , Água Potável/química , Eletrodos , Oxirredução , Espectroscopia Fotoeletrônica , Reprodutibilidade dos Testes , Análise Espectral Raman , Propriedades de Superfície
5.
Anal Biochem ; 496: 14-24, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26717896

RESUMO

The current study describes the electrografting of 2,4-diamino-1,3,5-triazine (AT) groups at the surfaces of glassy carbon electrode (GCE) and indium tin oxide (ITO) through in situ diazotization of melamine. The presence of AT groups at the surface of the electrode was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Furthermore, graphene oxide (GO) was self-assembled on AT grafted GCE. The oxygen functional groups present on the surface of GO were electrochemically reduced to form an electrochemically reduced graphene oxide (ERGO) on AT grafted electrode surface. Raman spectra show the characteristic D and G bands at 1340 and 1605 cm(-1), respectively, which confirms the successful attachment of GO on AT grafted surface, and the ratio of D and G bands was increased after the electrochemical reduction of GO. EIS shows that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the ERGO modified electrode than at bare, AT grafted, and GO modified GCEs. The electrocatalytic activity of ERGO was investigated toward the oxidation of methylxanthines. It shows excellent electrocatalytic activity toward these methylxanthines by not only shifting their oxidation potentials toward less positive potentials but also enhancing their oxidation currents.


Assuntos
Técnicas Eletroquímicas/métodos , Grafite/química , Triazinas/química , Xantinas/análise , Catálise , Microscopia Eletrônica de Varredura , Óxidos/química , Espectroscopia Fotoeletrônica , Análise Espectral Raman
6.
J Colloid Interface Sci ; 428: 84-94, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24910039

RESUMO

The spontaneous grafting of aminophenyl groups on gold nanoparticles (AuNPs) by reaction with in situ generated 4-aminophenyl diazonium cations (APD) in an aqueous medium was described. The spontaneous grafting was likely to proceed by transfer of electrons from AuNPs to the APD cations to form an aminophenyl radical and subsequent attachment with AuNPs. The aminophenyl (AP) functionalized gold nanoparticles (AP-AuNPs) were characterized by UV-visible spectroscopy, high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction, FT-IR spectroscopy, X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman spectroscopy (SERS). The absence of characteristic vibrational bands corresponding to diazonium group in the FT-IR spectrum confirmed the reduction of the aminophenyl diazonium cations at the surface of AuNPs. The spontaneous attachment of AP on AuNPs was confirmed by XPS from the observed binding energy values for -NH2 at 399.4 eV and -N=N- at 400.2 eV. The SERS spectrum reveals the presence Au-C (437 cm(-1)) bond on AP-AuNPs. Further, the AP-AuNPs were self-assembled on GC/ITO electrode (AP-AuNPs modified electrode) with the aid of free amine groups present on the surface of AP-AuNPs via Michael's nucleophilic addition reaction. The AP-AuNPs modified electrode was characterized by cyclic voltammetry, impedance spectroscopy, UV-visible spectroscopy and scanning electron microscopy. Impedance studies show that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the AP-AuNPs modified electrode (1.81×10(-4) cm s(-1)) than at bare (3.77×10(-5) cm s(-1)) GC electrode. Finally, the electrocatalytic activity of the AP-AuNPs modified electrode was demonstrated by studying the oxidation of dopamine (DA).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA