Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663031

RESUMO

Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36896705

RESUMO

Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS. Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests. Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes. Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Mutação , Testes Genéticos/métodos , Proteína C9orf72/genética
3.
Front Microbiol ; 12: 711077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394059

RESUMO

The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.

4.
Front Microbiol ; 12: 614355, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763039

RESUMO

Updating genome databases to reflect newly published molecular findings for an organism was hard enough when only a single strain of a given organism had been sequenced. With multiple sequenced strains now available for many organisms, the challenge has grown significantly because of the still-limited resources available for the manual curation that corrects errors and captures new knowledge. We have developed a method to automatically propagate multiple types of curated knowledge from genes and proteins in one genome database to their orthologs in uncurated databases for related strains, imposing several quality-control filters to reduce the chances of introducing errors. We have applied this method to propagate information from the highly curated EcoCyc database for Escherichia coli K-12 to databases for 480 other Escherichia coli strains in the BioCyc database collection. The increase in value and utility of the target databases after propagation is considerable. Target databases received updates for an average of 2,535 proteins each. In addition to widespread addition and regularization of gene and protein names, 97% of the target databases were improved by the addition of at least 200 new protein complexes, at least 800 new or updated reaction assignments, and at least 2,400 sets of GO annotations.

5.
Brief Bioinform ; 22(1): 109-126, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31813964

RESUMO

MOTIVATION: Biological systems function through dynamic interactions among genes and their products, regulatory circuits and metabolic networks. Our development of the Pathway Tools software was motivated by the need to construct biological knowledge resources that combine these many types of data, and that enable users to find and comprehend data of interest as quickly as possible through query and visualization tools. Further, we sought to support the development of metabolic flux models from pathway databases, and to use pathway information to leverage the interpretation of high-throughput data sets. RESULTS: In the past 4 years we have enhanced the already extensive Pathway Tools software in several respects. It can now support metabolic-model execution through the Web, it provides a more accurate gap filler for metabolic models; it supports development of models for organism communities distributed across a spatial grid; and model results may be visualized graphically. Pathway Tools supports several new omics-data analysis tools including the Omics Dashboard, multi-pathway diagrams called pathway collages, a pathway-covering algorithm for metabolomics data analysis and an algorithm for generating mechanistic explanations of multi-omics data. We have also improved the core pathway/genome databases management capabilities of the software, providing new multi-organism search tools for organism communities, improved graphics rendering, faster performance and re-designed gene and metabolite pages. AVAILABILITY: The software is free for academic use; a fee is required for commercial use. See http://pathwaytools.com. CONTACT: pkarp@ai.sri.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Briefings in Bioinformatics online.


Assuntos
Genômica/métodos , Metabolômica/métodos , Software/normas , Biologia de Sistemas/métodos , Animais , Humanos
6.
Science ; 369(6502)2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32703847

RESUMO

The extensive heterogeneity of biological data poses challenges to analysis and interpretation. Construction of a large-scale mechanistic model of Escherichia coli enabled us to integrate and cross-evaluate a massive, heterogeneous dataset based on measurements reported by various groups over decades. We identified inconsistencies with functional consequences across the data, including that the total output of the ribosomes and RNA polymerases described by data are not sufficient for a cell to reproduce measured doubling times, that measured metabolic parameters are neither fully compatible with each other nor with overall growth, and that essential proteins are absent during the cell cycle-and the cell is robust to this absence. Finally, considering these data as a whole leads to successful predictions of new experimental outcomes, in this case protein half-lives.


Assuntos
Análise de Dados , Conjuntos de Dados como Assunto , Proteínas de Escherichia coli , Escherichia coli , Simulação por Computador
7.
Nucleic Acids Res ; 48(D1): D445-D453, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31586394

RESUMO

MetaCyc (MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains 2749 pathways derived from more than 60 000 publications, making it the largest curated collection of metabolic pathways. The data in MetaCyc are evidence-based and richly curated, resulting in an encyclopedic reference tool for metabolism. MetaCyc is also used as a knowledge base for generating thousands of organism-specific Pathway/Genome Databases (PGDBs), which are available in BioCyc.org and other genomic portals. This article provides an update on the developments in MetaCyc during September 2017 to August 2019, up to version 23.1. Some of the topics that received intensive curation during this period include cobamides biosynthesis, sterol metabolism, fatty acid biosynthesis, lipid metabolism, carotenoid metabolism, protein glycosylation, antibiotics and cytotoxins biosynthesis, siderophore biosynthesis, bioluminescence, vitamin K metabolism, brominated compound metabolism, plant secondary metabolism and human metabolism. Other additions include modifications to the GlycanBuilder software that enable displaying glycans using symbolic representation, improved graphics and fonts for web displays, improvements in the PathoLogic component of Pathway Tools, and the optional addition of regulatory information to pathway diagrams.


Assuntos
Bases de Dados Factuais , Genômica/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Software , Animais , Enzimas/genética , Enzimas/metabolismo , Humanos , Plantas/genética , Plantas/metabolismo
8.
Brief Bioinform ; 20(4): 1085-1093, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-29447345

RESUMO

BioCyc.org is a microbial genome Web portal that combines thousands of genomes with additional information inferred by computer programs, imported from other databases and curated from the biomedical literature by biologist curators. BioCyc also provides an extensive range of query tools, visualization services and analysis software. Recent advances in BioCyc include an expansion in the content of BioCyc in terms of both the number of genomes and the types of information available for each genome; an expansion in the amount of curated content within BioCyc; and new developments in the BioCyc software tools including redesigned gene/protein pages and metabolite pages; new search tools; a new sequence-alignment tool; a new tool for visualizing groups of related metabolic pathways; and a facility called SmartTables, which enables biologists to perform analyses that previously would have required a programmer's assistance.


Assuntos
Genoma Microbiano , Redes e Vias Metabólicas , Software , Biologia Computacional , Bases de Dados Genéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Genômica , Internet , Modelos Biológicos , Ferramenta de Busca
9.
EcoSal Plus ; 8(1)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30406744

RESUMO

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene product, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality and on nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc and can be executed via EcoCyc.org. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review outlines the data content of EcoCyc and of the procedures by which this content is generated.


Assuntos
Bases de Dados Genéticas , Escherichia coli K12/genética , Genoma Bacteriano , Software , Biologia Computacional , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Internet , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Interface Usuário-Computador
10.
Nucleic Acids Res ; 46(D1): D633-D639, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059334

RESUMO

MetaCyc (https://MetaCyc.org) is a comprehensive reference database of metabolic pathways and enzymes from all domains of life. It contains more than 2570 pathways derived from >54 000 publications, making it the largest curated collection of metabolic pathways. The data in MetaCyc is strictly evidence-based and richly curated, resulting in an encyclopedic reference tool for metabolism. MetaCyc is also used as a knowledge base for generating thousands of organism-specific Pathway/Genome Databases (PGDBs), which are available in the BioCyc (https://BioCyc.org) and other PGDB collections. This article provides an update on the developments in MetaCyc during the past two years, including the expansion of data and addition of new features.


Assuntos
Bases de Dados Factuais , Enzimas/metabolismo , Redes e Vias Metabólicas , Animais , Archaea/metabolismo , Bactérias/metabolismo , Curadoria de Dados , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Humanos , Internet , Filogenia , Plantas/metabolismo , Software , Especificidade da Espécie
11.
Nucleic Acids Res ; 45(D1): D543-D550, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27899573

RESUMO

EcoCyc (EcoCyc.org) is a freely accessible, comprehensive database that collects and summarizes experimental data for Escherichia coli K-12, the best-studied bacterial model organism. New experimental discoveries about gene products, their function and regulation, new metabolic pathways, enzymes and cofactors are regularly added to EcoCyc. New SmartTable tools allow users to browse collections of related EcoCyc content. SmartTables can also serve as repositories for user- or curator-generated lists. EcoCyc now supports running and modifying E. coli metabolic models directly on the EcoCyc website.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Metabolismo Energético , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Transdução de Sinais , Software , Fatores de Transcrição/metabolismo , Navegador
12.
Brief Bioinform ; 17(5): 877-90, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26454094

RESUMO

Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms.


Assuntos
Genoma , Biologia Computacional , Genômica , Internet , Redes e Vias Metabólicas , Design de Software , Biologia de Sistemas
13.
Nucleic Acids Res ; 44(D1): D471-80, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26527732

RESUMO

The MetaCyc database (MetaCyc.org) is a freely accessible comprehensive database describing metabolic pathways and enzymes from all domains of life. The majority of MetaCyc pathways are small-molecule metabolic pathways that have been experimentally determined. MetaCyc contains more than 2400 pathways derived from >46,000 publications, and is the largest curated collection of metabolic pathways. BioCyc (BioCyc.org) is a collection of 5700 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems, and pathway-hole fillers. The BioCyc website offers a variety of tools for querying and analyzing PGDBs, including Omics Viewers and tools for comparative analysis. This article provides an update of new developments in MetaCyc and BioCyc during the last two years, including addition of Gibbs free energy values for compounds and reactions; redesign of the primary gene/protein page; addition of a tool for creating diagrams containing multiple linked pathways; several new search capabilities, including searching for genes based on sequence patterns, searching for databases based on an organism's phenotypes, and a cross-organism search; and a metabolite identifier translation service.


Assuntos
Bases de Dados de Compostos Químicos , Enzimas/metabolismo , Redes e Vias Metabólicas , Bases de Dados Genéticas , Transporte de Elétrons , Genoma , Internet , Redes e Vias Metabólicas/genética , Software
14.
BMC Syst Biol ; 8: 79, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24974895

RESUMO

BACKGROUND: Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. RESULTS: We present EcoCyc-18.0-GEM, a genome-scale model of the E. coli K-12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc-18.0-GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc-18.0-GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model's derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc-18.0-GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. CONCLUSION: Significant advantages can be derived from the combination of model organism databases and flux balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a highly accurate metabolic model and provides a rigorous consistency check for information stored in the database.


Assuntos
Bases de Dados Factuais , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Genômica , Análise do Fluxo Metabólico , Modelos Biológicos , Trifosfato de Adenosina/metabolismo , Biomassa , Genoma Bacteriano/genética , Software
15.
Artigo em Inglês | MEDLINE | ID: mdl-24923819

RESUMO

Manual extraction of information from the biomedical literature-or biocuration-is the central methodology used to construct many biological databases. For example, the UniProt protein database, the EcoCyc Escherichia coli database and the Candida Genome Database (CGD) are all based on biocuration. Biological databases are used extensively by life science researchers, as online encyclopedias, as aids in the interpretation of new experimental data and as golden standards for the development of new bioinformatics algorithms. Although manual curation has been assumed to be highly accurate, we are aware of only one previous study of biocuration accuracy. We assessed the accuracy of EcoCyc and CGD by manually selecting curated assertions within randomly chosen EcoCyc and CGD gene pages and by then validating that the data found in the referenced publications supported those assertions. A database assertion is considered to be in error if that assertion could not be found in the publication cited for that assertion. We identified 10 errors in the 633 facts that we validated across the two databases, for an overall error rate of 1.58%, and individual error rates of 1.82% for CGD and 1.40% for EcoCyc. These data suggest that manual curation of the experimental literature by Ph.D-level scientists is highly accurate. Database URL: http://ecocyc.org/, http://www.candidagenome.org//


Assuntos
Candida/genética , Mineração de Dados/métodos , Bases de Dados Genéticas , Bases de Dados de Proteínas , Escherichia coli/metabolismo , Reprodutibilidade dos Testes
16.
J Bacteriol ; 196(5): 982-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24363340

RESUMO

The sets of compounds that can support growth of an organism are defined by the presence of transporters and metabolic pathways that convert nutrient sources into cellular components and energy for growth. A collection of known nutrient sources can therefore serve both as an impetus for investigating new metabolic pathways and transporters and as a reference for computational modeling of known metabolic pathways. To establish such a collection for Escherichia coli K-12, we have integrated data on the growth or nongrowth of E. coli K-12 obtained from published observations using a variety of individual media and from high-throughput phenotype microarrays into the EcoCyc database. The assembled collection revealed a substantial number of discrepancies between the high-throughput data sets, which we investigated where possible using low-throughput growth assays on soft agar and in liquid culture. We also integrated six data sets describing 16,119 observations of the growth of single-gene knockout mutants of E. coli K-12 into EcoCyc, which are relevant to antimicrobial drug design, provide clues regarding the roles of genes of unknown function, and are useful for validating metabolic models. To make this information easily accessible to EcoCyc users, we developed software for capturing, querying, and visualizing cellular growth assays and gene essentiality data.


Assuntos
Escherichia coli K12/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Antibacterianos/farmacologia , Bases de Dados Factuais , Desenho de Fármacos , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Análise em Microsséries , Mutação , Nitrogênio/metabolismo , Software
17.
Nucleic Acids Res ; 42(Database issue): D459-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225315

RESUMO

The MetaCyc database (MetaCyc.org) is a comprehensive and freely accessible database describing metabolic pathways and enzymes from all domains of life. MetaCyc pathways are experimentally determined, mostly small-molecule metabolic pathways and are curated from the primary scientific literature. MetaCyc contains >2100 pathways derived from >37,000 publications, and is the largest curated collection of metabolic pathways currently available. BioCyc (BioCyc.org) is a collection of >3000 organism-specific Pathway/Genome Databases (PGDBs), each containing the full genome and predicted metabolic network of one organism, including metabolites, enzymes, reactions, metabolic pathways, predicted operons, transport systems and pathway-hole fillers. Additions to BioCyc over the past 2 years include YeastCyc, a PGDB for Saccharomyces cerevisiae, and 891 new genomes from the Human Microbiome Project. The BioCyc Web site offers a variety of tools for querying and analysis of PGDBs, including Omics Viewers and tools for comparative analysis. New developments include atom mappings in reactions, a new representation of glycan degradation pathways, improved compound structure display, better coverage of enzyme kinetic data, enhancements of the Web Groups functionality, improvements to the Omics viewers, a new representation of the Enzyme Commission system and, for the desktop version of the software, the ability to save display states.


Assuntos
Bases de Dados de Compostos Químicos , Enzimas/metabolismo , Redes e Vias Metabólicas , Enzimas/química , Enzimas/classificação , Ontologia Genética , Genoma , Internet , Cinética , Redes e Vias Metabólicas/genética , Polissacarídeos/metabolismo , Software
18.
EcoSal Plus ; 6(1)2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-26442933

RESUMO

EcoCyc is a bioinformatics database available at EcoCyc.org that describes the genome and the biochemical machinery of Escherichia coli K-12 MG1655. The long-term goal of the project is to describe the complete molecular catalog of the E. coli cell, as well as the functions of each of its molecular parts, to facilitate a system-level understanding of E. coli. EcoCyc is an electronic reference source for E. coli biologists and for biologists who work with related microorganisms. The database includes information pages on each E. coli gene, metabolite, reaction, operon, and metabolic pathway. The database also includes information on E. coli gene essentiality and on nutrient conditions that do or do not support the growth of E. coli. The website and downloadable software contain tools for analysis of high-throughput data sets. In addition, a steady-state metabolic flux model is generated from each new version of EcoCyc. The model can predict metabolic flux rates, nutrient uptake rates, and growth rates for different gene knockouts and nutrient conditions. This review provides a detailed description of the data content of EcoCyc and of the procedures by which this content is generated.

19.
PLoS One ; 8(9): e75210, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086468

RESUMO

The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database--these are metabolites which lack the requisite reactions (either metabolic or transport) that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12--these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.


Assuntos
Bases de Dados de Compostos Químicos , Escherichia coli K12/metabolismo , Redes e Vias Metabólicas/fisiologia , Metaboloma , Vitamina B 12/metabolismo
20.
BMC Bioinformatics ; 14: 114, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23537498

RESUMO

BACKGROUND: As more complete genome sequences become available, bioinformatics challenges arise in how to exploit genome sequences to make phenotypic predictions. One type of phenotypic prediction is to determine sets of compounds that will support the growth of a bacterium from the metabolic network inferred from the genome sequence of that organism. RESULTS: We present a method for computationally determining alternative growth media for an organism based on its metabolic network and transporter complement. Our method predicted 787 alternative anaerobic minimal nutrient sets for Escherichia coli K-12 MG1655 from the EcoCyc database. The program automatically partitioned the nutrients within these sets into 21 equivalence classes, most of which correspond to compounds serving as sources of carbon, nitrogen, phosphorous, and sulfur, or combinations of these essential elements. The nutrient sets were predicted with 72.5% accuracy as evaluated by comparison with 91 growth experiments. Novel aspects of our approach include (a) exhaustive consideration of all combinations of nutrients rather than assuming that all element sources can substitute for one another(an assumption that can be invalid in general) (b) leveraging the notion of a machinery-duplicating constraint, namely, that all intermediate metabolites used in active reactions must be produced in increasing concentrations to prevent successive dilution from cell division, (c) the use of Satisfiability Modulo Theory solvers rather than Linear Programming solvers, because our approach cannot be formulated as linear programming, (d) the use of Binary Decision Diagrams to produce an efficient implementation. CONCLUSIONS: Our method for generating minimal nutrient sets from the metabolic network and transporters of an organism combines linear constraint solving with binary decision diagrams to efficiently produce solution sets to provided growth problems.


Assuntos
Algoritmos , Meios de Cultura , Redes e Vias Metabólicas , Biologia Computacional/métodos , Escherichia coli K12/genética , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Genômica , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...