Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24450, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293545

RESUMO

Soil organic carbon (SOC) is in the focus of research due to its central role in regulating climate and maintaining fertility and resilience of soils. Methodologically, shifting from whole soil C measurements to specific SOC fractions increases possibility to detect small changes in the vast SOC storage, and enhances estimation of SOC stability. However, SOC fractionation schemes are numerous and variable. In this study, deionized water and sodium hexametaphosphate (SHMP) were compared in soil dispersion by separating soils into coarse (0.25-2 mm), medium (0.063-0.25 mm) and fine (<0.063 mm) size fractions. The first two fractions were further separated by density (1.8 g cm-3) to obtain free particulate organic C (POC) and mineral associated organic C (MOC). The approach was applied to a clay and a silt loam soil with and without wood fiber sludge amendment to follow the added C. Aggregate disruption was enhanced with SHMP in comparison to water, but the effect was small and the use of SHMP decreased recovery of SOC, wherefore water was preferred. In both soils, 5-10 % of SOC occurred as coarse POC, 1-3% as coarse MOC, 5 % as medium POC, 10 % as medium MOC, and 70-85 % as fine MOC. The added C resided in the POC fractions with an indication of minor accumulation to the fine MOC in the clay soil. Longer time frame with repeated C additions would be needed to increase the stable MOC storages though saturation of the MOC reserve may hinder accumulation in the silt loam low in fines.

2.
J Environ Manage ; 352: 119945, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215596

RESUMO

Sequestering carbon into agricultural soils is considered as a means of mitigating climate change. We used agronomic soil test results representing c. 95% of the farmed land area in Finland to estimate the potential of the uppermost 15 cm soil layer of mineral agricultural soils to sequester organic carbon (OC) and to contribute to the mitigation of climate change. The estimation of the maximum capacity of mineral matter to protect OC in stable mineral-associated form was based on the theory that clay and fine-sized (fines = clay + silt) particles have a limited capacity to protect OC. In addition, we used the clay/OC and fines/OC ratios to identify areas with a risk of erosion and reduced productivity, thus indicating priority areas potentially benefitting from the increased soil OC contents. We found that 32-40% of the mineral agricultural soils in Finland have the potential to further accumulate mineral-associated OC (MOC), while in the majority of soils, the current OC stock in the uppermost 15 cm exceeded the capacity of mineral matter to protect OC. The nationwide soil OC sequestration potential of the uppermost 15 cm in mineral agricultural soils ranged between 0.21 and 0.26 Tg, which corresponds to less than 2% of annual greenhouse gas emissions in Finland. The fields with the highest potential for SOC accrual were found in the southern and southwestern parts of the country, including some of the most intensively cultivated high-clay soils. Although the nationwide potential for additional OC sequestration was estimated to be relatively small, the current OC storage in Finnish arable mineral soils (0-15 cm) is large, 128 Tg. Farming practices enabling maximum OC input into the soil play an important role as a tool for mitigating the loss of carbon from high-OC soils in the changing climate. Furthermore, especially in high-clay areas with potential for MOC accrual, efforts to increase soil OC could help improve soil structural stability and therefore reduce erosion and the loss of nutrients to the aquatic environments.


Assuntos
Carbono , Solo , Solo/química , Finlândia , Argila , Carbono/análise , Agricultura , Minerais , Sequestro de Carbono
3.
Glob Chang Biol ; 28(12): 3960-3973, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35298094

RESUMO

One-fourth of the global soil organic carbon (SOC) is stored in the boreal region, where climate change is predicted to be faster than the global average. Planetary warming is accelerated if climate change promotes SOC release into the atmosphere as carbon dioxide. However, the soil carbon-climate feedbacks have been poorly confirmed by SOC measurements despite their importance on global climate. In this study, we used data collected as part of the Finnish arable soil monitoring program to study the influence of climate change, management practices, and historical land use on changes in SOC content using a Bayesian approach. Topsoil samples (n = 385) collected nationwide in 2009 and 2018 showed that SOC content has decreased at the rate of 0.35% year-1 on average. Based on the Bayesian modeling of our data, we can say with a certainty of 79%-91% that increase in summertime (May-Sep) temperature has resulted in SOC loss while increased precipitation has resulted in SOC loss with a certainty of 90%-97%. The exact percentages depend on the climate dataset used. Historical land use was found to influence the SOC content for decades after conversion to cropland. Former organic soils with a high SOC-to-fine-fraction ratio were prone to high SOC loss. In fields with long cultivation history (>100 years), however, the SOC-to-fine-fraction ratio had stabilized to approximately 0.03-0.04 and the changes in SOC content leveled off. Our results showed that, although arable SOC sequestration can be promoted by diversifying crop rotations and by cultivating perennial grasses, it is unlikely that improved management practices are sufficient to counterbalance the climate change-induced SOC losses in boreal conditions. This underlines the importance of the reduction of greenhouse gas emissions to avoid the acceleration of planetary warming.


Assuntos
Mudança Climática , Solo , Agricultura/métodos , Teorema de Bayes , Carbono , Sequestro de Carbono , Minerais
4.
Sci Total Environ ; 784: 147139, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33892321

RESUMO

A substantial percentage of manure nitrogen (N) can be lost as gaseous ammonia (NH3) during storage and field spreading. Lowering slurry pH is a simple and accepted method for preserving its N. Efficiency of slow pyrolysis liquid (PL) produced from birch (Betula sp.) as an acidifying agent, and its ability to reduce NH3 emissions following surface application of cattle slurry, was studied in a field experiment. Untreated slurry (US) and slurries acidified with PL and sulfuric acid (SA) were applied to the second harvest of a grass ley. Immediate NH3 emissions, grass biomass, N-yield and possible toxic impacts on soil nematodes and enchytraeids were examined. Furthermore, the effects on soil respiration, nitrogen dynamics and seed germination were studied in subsequent laboratory experiments. In the field, over one third of the water-extractable ammonium-N (NH4-N) applied was lost through NH3 volatilization from US. SA and PL acidified slurries reduced NH3-N emission rate equally from 3.4 to <0.04 kg ha-1 h-1. Acidification with SA resulted in the highest and that with PL in the lowest grass dry matter (DM) and N yield. Neither SA nor PL acidification had negative effects on soil enchytraeids or nematodes. Reduced yield production, seed germination and delayed microbial activity after PL slurry application were most probably caused by the PL containing organic compounds. However, later increase in carbon dioxide (CO2) production and improved seed germination suggest that these compounds were rapidly volatilized and/or degraded by soil microbes. Though PL efficiently cut NH3 emission from surface-spread slurry, further studies on appropriate application methods and possible phytotoxicity are needed.


Assuntos
Pirólise , Solo , Amônia/análise , Animais , Bovinos , Fertilizantes , Esterco , Nitrogênio/análise
5.
Sci Total Environ ; 731: 138955, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32417473

RESUMO

Short-term agronomic and environmental benefits are fundamental factors in encouraging farmers to use biochar on a broad scale. The short-term impacts of forest residue biochar (BC) on the productivity and carbon (C) storage of arable boreal clay soil were studied in a field experiment. In addition, rain simulations and aggregate stability tests were carried out to investigate the potential of BC to reduce nutrient export to surface waters. A BC addition of 30 t ha-1 increased soil test phosphorus and decreased bulk density in the surface soil but did not significantly change pH or water retention properties, and most importantly, did not increase the yield. There were no changes in the bacterial or fungal communities, or biomasses. Soil basal respiration was higher in BC-amended plots in the spring, but no differences in respiration rates were detected in the fall two years after the application. Rain simulation experiments did not support the use of BC in reducing erosion or the export of nutrients from the field. Of the C added, on average 80% was discovered in the 0-45 cm soil layer one year after the application. Amendment of boreal clay soil with a high rate of BC characterized by a moderately alkaline pH, low surface functionalities, and a recalcitrant nature, did not induce such positive impacts that would unambiguously motivate farmers to invest in BC. BC use seems unviable from the farmer's perspective but could play a role in climate change mitigation, as it will likely serve as long-term C storage.


Assuntos
Argila , Solo , Carvão Vegetal , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...