Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113939, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493476

RESUMO

Morphogens are important triggers for differentiation processes. Yet, downstream effectors that organize cell shape changes in response to morphogenic cues, such as retinoic acid, largely remain elusive. Additionally, derailed plasma membrane-derived signaling often is associated with cancer. We identify Ankrd26 as a critical player in cellular differentiation and as plasma membrane-localized protein able to self-associate and form clusters at the plasma membrane in response to retinoic acid. We show that Ankrd26 uses an N-terminal amphipathic structure for membrane binding and bending. Importantly, in an acute myeloid leukemia-associated Ankrd26 mutant, this critical structure was absent, and Ankrd26's membrane association and shaping abilities were impaired. In line with this, the mutation rendered Ankrd26 inactive in both gain-of-function and loss-of-function/rescue studies addressing retinoic acid/brain-derived neurotrophic factor (BDNF)-induced neuroblastoma differentiation. Our results highlight the importance and molecular details of Ankrd26-mediated organizational platforms for cellular differentiation at the plasma membrane and how impairment of these platforms leads to cancer-associated pathomechanisms involving these Ankrd26 properties.


Assuntos
Leucemia Mieloide Aguda , Tretinoína , Humanos , Diferenciação Celular , Tretinoína/farmacologia , Tretinoína/metabolismo , Transdução de Sinais , Membrana Celular/metabolismo , Leucemia Mieloide Aguda/metabolismo
2.
J Neurosci ; 44(6)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38129132

RESUMO

The coordinated action of a plethora of factors is required for the organization and dynamics of membranous structures critically underlying the development and function of cells, organs, and organisms. The evolutionary acquisition of additional amino acid motifs allows for expansion and/or specification of protein functions. We identify a thus far unrecognized motif specific for chordata EHBP1 proteins and demonstrate that this motif is critically required for interaction with syndapin I, an F-BAR domain-containing, membrane-shaping protein predominantly expressed in neurons. Gain-of-function and loss-of-function studies in rat primary hippocampal neurons (of mixed sexes) unraveled that EHBP1 has an important role in neuromorphogenesis. Surprisingly, our analyses uncovered that this newly identified function of EHBP1 did not require the domain responsible for Rab GTPase binding but was strictly dependent on EHBP1's syndapin I binding interface and on the presence of syndapin I in the developing neurons. These findings were underscored by temporally and spatially remarkable overlapping dynamics of EHBP1 and syndapin I at nascent dendritic branch sites. In addition, rescue experiments demonstrated the necessity of two additional EHBP1 domains for dendritic arborization, the C2 and CH domains. Importantly, the additionally uncovered critical involvement of the actin nucleator Cobl in EHBP1 functions suggested that not only static association with F-actin via EHBP1's CH domain is important for dendritic arbor formation but also actin nucleation. Syndapin interactions organize ternary protein complexes composed of EHBP1, syndapin I, and Cobl, and our functional data show that only together these factors give rise to proper cell shape during neuronal development.


Assuntos
Actinas , Proteínas dos Microfilamentos , Ratos , Animais , Actinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Neurônios/metabolismo , Ligação Proteica
3.
J Cell Biol ; 222(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37318382

RESUMO

Membrane-shaping proteins are driving forces behind establishment of proper cell morphology and function. Yet, their reported structural and in vitro properties are noticeably inconsistent with many physiological membrane topology requirements. We demonstrate that dendritic arborization of neurons is powered by physically coordinated shaping mechanisms elicited by members of two distinct classes of membrane shapers: the F-BAR protein syndapin I and the N-Ank superfamily protein ankycorbin. Strikingly, membrane-tubulating activities by syndapin I, which would be detrimental during dendritic branching, were suppressed by ankycorbin. Ankycorbin's integration into syndapin I-decorated membrane surfaces instead promoted curvatures and topologies reflecting those observed physiologically. In line with the functional importance of this mechanism, ankycorbin- and syndapin I-mediated functions in dendritic arborization mutually depend on each other and on a surprisingly specific interface mediating complex formation of the two membrane shapers. These striking results uncovered cooperative and interdependent functions of members of two fundamentally different membrane shaper superfamilies as a previously unknown, pivotal principle in neuronal shape development.


Assuntos
Proteínas de Membrana , Neurônios , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas , Neurônios/metabolismo , Proteínas do Citoesqueleto/metabolismo
4.
Nature ; 618(7964): 394-401, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225996

RESUMO

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Ubiquitinação , Autofagia/fisiologia , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo
5.
Nature ; 618(7964): 402-410, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225994

RESUMO

Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance.


Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Proteínas Ubiquitinadas , Ubiquitinação , Animais , Humanos , Camundongos , Autofagia/genética , Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Ubiquitinadas/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Membranas Intracelulares/metabolismo
6.
Commun Biol ; 6(1): 366, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012315

RESUMO

Synaptic plasticity involves proper establishment and rearrangement of structural and functional microdomains. Yet, visualization of the underlying lipid cues proved challenging. Applying a combination of rapid cryofixation, membrane freeze-fracturing, immunogold labeling and electron microscopy, we visualize and quantitatively determine the changes and the distribution of phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma membrane of dendritic spines and subareas thereof at ultra-high resolution. These efforts unravel distinct phases of PIP2 signals during induction of long-term depression (LTD). During the first minutes PIP2 rapidly increases in a PIP5K-dependent manner forming nanoclusters. PTEN contributes to a second phase of PIP2 accumulation. The transiently increased PIP2 signals are restricted to upper and middle spine heads. Finally, PLC-dependent PIP2 degradation provides timely termination of PIP2 cues during LTD induction. Together, this work unravels the spatial and temporal cues set by PIP2 during different phases after LTD induction and dissects the molecular mechanisms underlying the observed PIP2 dynamics.


Assuntos
Depressão Sináptica de Longo Prazo , Neurônios , Fosfatidilinositóis , Plasticidade Neuronal , Neurônios/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo
7.
Nat Cell Biol ; 25(1): 120-133, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36543981

RESUMO

In response to different types and intensities of mechanical force, cells modulate their physical properties and adapt their plasma membrane (PM). Caveolae are PM nano-invaginations that contribute to mechanoadaptation, buffering tension changes. However, whether core caveolar proteins contribute to PM tension accommodation independently from the caveolar assembly is unknown. Here we provide experimental and computational evidence supporting that caveolin-1 confers deformability and mechanoprotection independently from caveolae, through modulation of PM curvature. Freeze-fracture electron microscopy reveals that caveolin-1 stabilizes non-caveolar invaginations-dolines-capable of responding to low-medium mechanical forces, impacting downstream mechanotransduction and conferring mechanoprotection to cells devoid of caveolae. Upon cavin-1/PTRF binding, doline size is restricted and membrane buffering is limited to relatively high forces, capable of flattening caveolae. Thus, caveolae and dolines constitute two distinct albeit complementary components of a buffering system that allows cells to adapt efficiently to a broad range of mechanical stimuli.


Assuntos
Cavéolas , Caveolina 1 , Cavéolas/metabolismo , Caveolina 1/metabolismo , Mecanotransdução Celular , Membrana Celular/metabolismo , Proteínas/metabolismo
8.
J Neurosci ; 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35879097

RESUMO

Glycine receptor-mediated inhibitory neurotransmission is key for spinal cord function. Recent observations suggested that by largely elusive mechanisms also glycinergic synapses display synaptic plasticity. We imaged receptor fields at ultra-high resolution at freeze-fractured membranes, tracked surface and internalized glycine receptors (GlyR) and studied differential regulations of GlyRß interactions with the scaffold protein gephyrin and the F-BAR domain protein syndapin I and thereby reveal key principles of this process. S403 phosphorylation of GlyRß, known to be triggered by synaptic signaling, caused a decoupling from gephyrin scaffolds but simultaneously promoted association of syndapin I with GlyRß. In line, kainate-treatments used to trigger rearrangements of glycine receptors in murine syndapin I KO spinal cords (mixed sex) showed even more severe receptor field fragmentation than already observed in untreated syndapin I KO spinal cords. Syndapin I KO furthermore resulted in more dispersed receptors and increased receptor mobility also pointing out an important contribution of syndapin I in the organization of GlyRß fields. Strikingly, syndapin I KO also led to a complete disruption of kainate-induced GlyRß internalization. Accompanying quantitative ultra-high resolution studies in dissociated spinal cord neurons strongly suggested that the observed defects in GlyR internalization observed in syndapin I KO spinal cords are directly caused by syndapin I deficiency within murine spinal cord neurons. Together our results unveiled important mechanisms organizing and altering glycine receptor fields during both steady-state and particularly upon kainate-induced synaptic rearrangement - principles organizing and fine-tuning synaptic efficacy and plasticity of glycinergic synapses in the spinal cord.SIGNIFICANCE STATEMENTInitial observations suggested that also glycinergic synapses - key for spinal cord and brain stem functions - may display some form of synaptic plasticity. Imaging receptor fields at ultra-high resolution at freeze-fractured membranes, tracking surface and internalized glycine receptors (GlyR) and studying regulations of GlyRß interactions we here reveal key principles of these kainate-inducible adaptations. A switch from gephyrin-mediated receptor scaffolding to syndapin I-mediated GlyRß scaffolding and internalization allows for modulating synaptic receptor availability. In line, kainate-induced GlyRß internalization was completely disrupted and GlyRß receptor fields were distorted upon syndapin I KO. These results unveiled important mechanisms during both steady-state and kainate-induced alterations of synaptic GlyR fields - principles underlying synaptic efficacy and plasticity of synapses in the spinal cord.

9.
Cell Mol Life Sci ; 79(6): 286, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534740

RESUMO

Endocytosis is controlled by a well-orchestrated molecular machinery, where the individual players as well as their precise interactions are not fully understood. We now show that syndapin I/PACSIN 1 is expressed in pancreatic ß cells and that its knockdown abrogates ß cell endocytosis leading to disturbed plasma membrane protein homeostasis, as exemplified by an elevated density of L-type Ca2+ channels. Intriguingly, inositol hexakisphosphate (InsP6) activates casein kinase 2 (CK2) that phosphorylates syndapin I/PACSIN 1, thereby promoting interactions between syndapin I/PACSIN 1 and neural Wiskott-Aldrich syndrome protein (N-WASP) and driving ß cell endocytosis. Dominant-negative interference with endogenous syndapin I/PACSIN 1 protein complexes, by overexpression of the syndapin I/PACSIN 1 SH3 domain, decreases InsP6-stimulated endocytosis. InsP6 thus promotes syndapin I/PACSIN 1 priming by CK2-dependent phosphorylation, which endows the syndapin I/PACSIN 1 SH3 domain with the capability to interact with the endocytic machinery and thereby initiate endocytosis, as exemplified in ß cells.


Assuntos
Proteínas do Citoesqueleto , Ácido Fítico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Endocitose/fisiologia , Fosforilação
10.
PLoS Biol ; 19(12): e3001399, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34898601

RESUMO

Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair.


Assuntos
AVC Isquêmico/metabolismo , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Expressão Gênica/genética , Infarto da Artéria Cerebral Média , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA