Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
NPJ Vaccines ; 5: 11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047656

RESUMO

mRNA technologies have the potential to transform areas of medicine, including the prophylaxis of infectious diseases. The advantages for vaccines range from the acceleration of immunogen discovery to rapid response and multiple disease target manufacturing. A greater understanding of quality attributes that dictate translation efficiency, as well as a comprehensive appreciation of the importance of mRNA delivery, are influencing a new era of investment in development activities. The application of translational sciences and growing early-phase clinical experience continue to inform candidate vaccine selection. Here we review the state of the art for the prevention of infectious diseases by using mRNA and pertinent topics to the biotechnology and pharmaceutical industries.

2.
Clin Infect Dis ; 71(2): 403-411, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31562530

RESUMO

BACKGROUND: Bordetella pertussis is among the leading causes of vaccine-preventable deaths and morbidity globally. Human asymptomatic carriage as a reservoir for community transmission of infections might be a target of future vaccine strategies, but has not been demonstrated. Our objective was to demonstrate that asymptomatic nasopharyngeal carriage of Bordetella pertussis is inducible in humans and to define the microbiological and immunological features of presymptomatic infection. METHODS: Healthy subjects aged 18-45 years with an antipertussis toxin immunoglobin G (IgG) concentration of <20 international units/ml were inoculated intranasally with nonattenuated, wild-type Bordetella pertussis strain B1917. Safety, colonization, and shedding were monitored over 17 days in an inpatient facility. Colonization was assessed by culture and quantitative polymerase chain reaction. Azithromycin was administered from Day 14. The inoculum dose was escalated, aiming to colonize at least 70% of participants. Immunological responses were measured. RESULTS: There were 34 participants challenged, in groups of 4 or 5. The dose was gradually escalated from 103 colony-forming units (0% colonized) to 105 colony-forming units (80% colonized). Minor symptoms were reported in a minority of participants. Azithromycin eradicated colonization in 48 hours in 88% of colonized individuals. Antipertussis toxin IgG seroconversion occurred in 9 out of 19 colonized participants and in none of the participants who were not colonized. Nasal wash was a more sensitive method to detect colonization than pernasal swabs. No shedding of Bordetella pertussis was detected in systematically collected environmental samples. CONCLUSIONS: Bordetella pertussis colonization can be deliberately induced and leads to a systemic immune response without causing pertussis symptoms. CLINICAL TRIALS REGISTRATION: NCT03751514.


Assuntos
Bordetella pertussis , Coqueluche , Adolescente , Adulto , Azitromicina/uso terapêutico , Humanos , Pessoa de Meia-Idade , Nasofaringe , Vacina contra Coqueluche , Coqueluche/prevenção & controle , Adulto Jovem
3.
Vaccine ; 37(43): 6248-6254, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500964

RESUMO

Emerging and re-emerging infectious diseases are an expanding global threat to public health, security, and economies. Increasing populations, urbanization, deforestation, climate change, anti-vaccination movements, war, and international travel are some of the contributing factors to this trend. The recent Ebola, MERS-CoV, and Zika outbreaks demonstrated we are insufficiently prepared to respond with proven safe and effective countermeasures (i.e., vaccines and therapeutics). The State University of New York Upstate Medical University and the Trudeau Institute convened a summit of key opinion and thought leaders in the life sciences and biomedical research and development enterprises to explore global biopreparedness challenges, take an inventory of existing capabilities and capacities related to preparation and response, assess current "gaps," and prospect what could be done to improve our position. Herein we describe the summit proceedings, "Translational Immunology Supporting Biomedical Countermeasure Development for Emerging Vector-borne Viral Diseases," held October 2-3, 2018, at the Trudeau Institute in Saranac Lake, NY.


Assuntos
Doenças Transmissíveis Emergentes , Vetores de Doenças , Vacinas Virais/farmacologia , Viroses/prevenção & controle , Animais , Ensaios Clínicos como Assunto , Doenças Transmissíveis Emergentes/prevenção & controle , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Influenza Humana/etiologia , Influenza Humana/prevenção & controle , Gravidez , Complicações Infecciosas na Gravidez/etiologia , Pesquisa Translacional Biomédica , Vacinas Virais/uso terapêutico , Infecção por Zika virus/etiologia , Infecção por Zika virus/prevenção & controle
4.
Antiviral Res ; 171: 104592, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31473342

RESUMO

Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Peptídeos/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/química , Linhagem Celular , Colesterol/química , Modelos Animais de Doenças , Doença pelo Vírus Ebola/virologia , Doença do Vírus de Marburg/virologia , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Relação Estrutura-Atividade
5.
Sci Rep ; 9(1): 20362, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889148

RESUMO

Biomarkers predictive of inflammatory events post-vaccination could accelerate vaccine development. Within the BIOVACSAFE framework, we conducted three identically designed, placebo-controlled inpatient/outpatient clinical studies (NCT01765413/NCT01771354/NCT01771367). Six antiviral vaccination strategies were evaluated to generate training data-sets of pre-/post-vaccination vital signs, blood changes and whole-blood gene transcripts, and to identify putative biomarkers of early inflammation/reactogenicity that could guide the design of subsequent focused confirmatory studies. Healthy adults (N = 123; 20-21/group) received one immunization at Day (D)0. Alum-adjuvanted hepatitis B vaccine elicited vital signs and inflammatory (CRP/innate cells) responses that were similar between primed/naive vaccinees, and low-level gene responses. MF59-adjuvanted trivalent influenza vaccine (ATIV) induced distinct physiological (temperature/heart rate/reactogenicity) response-patterns not seen with non-adjuvanted TIV or with the other vaccines. ATIV also elicited robust early (D1) activation of IFN-related genes (associated with serum IP-10 levels) and innate-cell-related genes, and changes in monocyte/neutrophil/lymphocyte counts, while TIV elicited similar but lower responses. Due to viral replication kinetics, innate gene activation by live yellow-fever or varicella-zoster virus (YFV/VZV) vaccines was more suspended, with early IFN-associated responses in naïve YFV-vaccine recipients but not in primed VZV-vaccine recipients. Inflammatory responses (physiological/serum markers, innate-signaling transcripts) are therefore a function of the vaccine type/composition and presence/absence of immune memory. The data reported here have guided the design of confirmatory Phase IV trials using ATIV to provide tools to identify inflammatory or reactogenicity biomarkers.


Assuntos
Biomarcadores , Vacinas Virais/efeitos adversos , Proteínas de Fase Aguda , Adulto , Citocinas/sangue , Feminino , Testes Hematológicos , Humanos , Masculino , Avaliação de Sintomas , Transcrição Gênica , Vacinação/efeitos adversos , Vacinação/métodos , Vacinas Virais/imunologia , Sinais Vitais , Adulto Jovem
6.
BMJ Open ; 7(10): e018594, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29025851

RESUMO

INTRODUCTION: We summarise an ethically approved protocol for the development of an experimental human challenge colonisation model. Globally Bordetella pertussis is one of the leading causes of vaccine-preventable death. Many countries have replaced whole cell vaccines with acellular vaccines over the last 20 years during which pertussis appears to be resurgent in a number of countries in the developed world that boast high immunisation coverage. The acellular vaccine provides relatively short-lived immunity and, in contrast to whole cell vaccines, may be less effective against colonisation and subsequent transmission. To improve vaccine strategies, a greater understanding of human B. pertussis colonisation is required. This article summarises a protocol and does not contain any results. METHODS AND ANALYSIS: A controlled human colonisation model will be developed over two phases. In phase A, a low dose of the inoculum will be given intranasally to healthy participants. This dose will be escalated or de-escalated until colonisation is achieved in approximately 70% (95% CI 47% to 93%) of the exposed volunteers without causing disease. The colonisation period, shedding and exploratory immunology will be assessed during a 17-day inpatient stay and follow-up over 1 year. The dose of inoculum that achieves 70% colonisation will then be confirmed in phase B, comparing healthy participants exposed to B. pertussis with a control group receiving a sham inoculum. ETHICS AND DISSEMINATION: This study has been approved by the ethical committee reference: 17/SC/0006, 24 February 2017. Findings will be published in peer-reviewed open access journals as soon as possible.


Assuntos
Bordetella pertussis/fisiologia , Relação Dose-Resposta Imunológica , Vacina contra Coqueluche/administração & dosagem , Coqueluche/imunologia , Bordetella pertussis/isolamento & purificação , Protocolos Clínicos , Humanos , Vacina contra Coqueluche/imunologia , Projetos de Pesquisa , Vacinação , Vacinas Acelulares/administração & dosagem , Vacinas Acelulares/imunologia , Coqueluche/prevenção & controle
7.
Front Immunol ; 8: 557, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588574

RESUMO

The RTS,S candidate malaria vaccine can protect against controlled human malaria infection (CHMI), but how protection is achieved remains unclear. Here, we have analyzed longitudinal peripheral blood transcriptome and immunogenicity data from a clinical efficacy trial in which healthy adults received three RTS,S doses 4 weeks apart followed by CHMI 2 weeks later. Multiway partial least squares discriminant analysis (N-PLS-DA) of transcriptome data identified 110 genes that could be used in predictive models of protection. Among the 110 genes, 42 had known immune-related functions, including 29 that were related to the NF-κB-signaling pathway and 14 to the IFN-γ-signaling pathway. Post-dose 3 serum IFN-γ concentrations were also correlated with protection; and N-PLS-DA of IFN-γ-signaling pathway transcriptome data selected almost all (44/45) of the representative genes for predictive models of protection. Hence, the identification of the NF-κB and IFN-γ pathways provides further insight into how vaccine-mediated protection may be achieved.

8.
Vaccine ; 32(49): 6683-91, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24950358

RESUMO

In an attempt to improve the efficacy of the candidate malaria vaccine RTS,S/AS02, two studies were conducted in 1999 in healthy volunteers of RTS,S/AS02 in combination with recombinant Plasmodium falciparum thrombospondin-related anonymous protein (TRAP). In a Phase 1 safety and immunogenicity study, volunteers were randomized to receive TRAP/AS02 (N=10), RTS,S/AS02 (N=10), or RTS,S+TRAP/AS02 (N=20) at 0, 1 and 6-months. In a Phase 2 challenge study, subjects were randomized to receive either RTS,S+TRAP/AS02 (N=25) or TRAP/AS02 (N=10) at 0 and 1-month, or to a challenge control group (N=8). In both studies, the combination vaccine had an acceptable safety profile and was acceptably tolerated. Antigen-specific antibodies, lymphoproliferative responses, and IFN-γ production by ELISPOT assay elicited with the combination vaccine were qualitatively similar to those generated by the single component vaccines. However, post-dose 2 anti-CS antibodies in the RTS,S+TRAP/AS02 vaccine recipients were lower than in the RTS,S/AS02 vaccine recipients. After challenge, 10 of 11 RTS,S+TRAP/AS02 vaccinees, 5 of 5 TRAP/AS02 vaccinees, and 8 of 8 infectivity controls developed parasitemia, with median pre-patent periods of 13.0, 11.0, and 12.0 days, respectively. The absence of any prevention or delay of parasitemia by TRAP/AS02 suggests no apparent added value of TRAP/AS02 as a candidate vaccine. The absence of significant protection or delay of parasitemia in the 11 RTS,S+TRAP/AS02 vaccine recipients contrasts with previous 2 dose studies of RTS,S/AS02. The small sample size did not permit identifying statistically significant differences between the study arms. However, we speculate, within the constraints of the challenge study, that the presence of the TRAP antigen may have interfered with the vaccine efficacy previously observed with this regimen of RTS,S/AS02, and that any future TRAP-based vaccines should consider employing alternative vaccine platforms.


Assuntos
Lipídeo A/análogos & derivados , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Saponinas/efeitos adversos , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Proliferação de Células , Combinação de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , ELISPOT , Feminino , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Lipídeo A/administração & dosagem , Lipídeo A/efeitos adversos , Vacinas Antimaláricas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Parasitemia/prevenção & controle , Proteínas de Protozoários/imunologia , Saponinas/administração & dosagem , Resultado do Tratamento , Vacinação/efeitos adversos , Vacinação/métodos , Adulto Jovem
9.
Clin Infect Dis ; 59(3): 390-7, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24795331

RESUMO

Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/prevenção & controle , Infecção Hospitalar/prevenção & controle , Farmacorresistência Bacteriana , Monitoramento Epidemiológico , Pesquisa , Estados Unidos , United States Department of Defense
10.
PLoS One ; 8(4): e61395, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613845

RESUMO

Vaccination with the pre-erythrocytic malaria vaccine RTS,S induces high levels of antibodies and CD4(+) T cells specific for the circumsporozoite protein (CSP). Using a biologically-motivated mathematical model of sporozoite infection fitted to data from malaria-naive adults vaccinated with RTS,S and subjected to experimental P. falciparum challenge, we characterised the relationship between antibodies, CD4(+) T cell responses and protection from infection. Both anti-CSP antibody titres and CSP-specific CD4(+) T cells were identified as immunological surrogates of protection, with RTS,S induced anti-CSP antibodies estimated to prevent 32% (95% confidence interval (CI) 24%-41%) of infections. The addition of RTS,S-induced CSP-specific CD4(+) T cells was estimated to increase vaccine efficacy against infection to 40% (95% CI, 34%-48%). This protective efficacy is estimated to result from a 96.1% (95% CI, 93.4%-97.8%) reduction in the liver-to-blood parasite inoculum, indicating that in volunteers who developed P. falciparum infection, a small number of parasites (often the progeny of a single surviving sporozoite) are responsible for breakthrough blood-stage infections.


Assuntos
Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Adulto , Animais , Anticorpos Antiprotozoários/imunologia , Linfócitos T CD4-Positivos/metabolismo , Feminino , Humanos , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Masculino , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/imunologia
11.
J Cancer ; 4(3): 227-40, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459622

RESUMO

Colorectal cancer (CRC) is a major burden to healthcare systems worldwide accounting for approximately one million of new cancer cases worldwide. Even though, CRC mortality has decreased over the last 20 years, it remains the third most common cause of cancer-related mortality, accounting for approximately 600,000 deaths in 2008 worldwide. A multitude of risk factors have been linked to CRC, including hereditary factors, environmental factors and inflammatory syndromes affecting the gastrointestinal tract. Recently, various pathogens were added to the growing list of risk factors for a number of common epithelial cancers, but despite the multitude of correlative studies, only suggestions remain about the possible relationship between selected viruses and bacteria of interest and the CRC risk. United States military service members are exposed to various risk factors impacting the incidence of cancer development. These exposures are often different from that of many sectors of the civilian population. Thereby, cancer risk identification, screening and early detection are imperative for both the military health care beneficiaries and the population as a whole. In this review, we will focus on several pathogens and their potential roles in development of CRC, highlighting the clinical trials evaluating this correlation and provide our personal opinion about the importance of risk reduction, health promotion and disease prevention for military health care beneficiaries.

12.
Vaccine ; 29(48): 8847-54, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21983360

RESUMO

In a Phase 2a trial of the RTS,S/AS vaccine, we described significant association between protection against infection and vaccine-induced CD4 T cells. To determine whether processing of the circumsporozoite protein as a component of the RTS,S particulate antigen yields the same HLA-DR-restricted epitopes as those recognized by CD4 T cells from donors immunized by exposure to attenuated or infectious sporozoites we mapped the specificities of the RTS,S primed CD4 T cells by measuring IFN-γ cultured Elispot responses to pairs of overlapping 15 a.a. peptides that span the protein's C-terminus. Peptide pairs representing the previously described TH2R, T* and CS.T3 epitopes, were immunoprevalent and immunodominant. There was no response to the peptides corresponding to the human thrombospondin homology region. Responses to the CD4 T cell epitopes were restricted by multiple HLA-DR haplotypes. Of note, HLA-DR4 and HLA-DR11 restricted epitopes in the T* region and in the location on the CS protein defined by peptide pair 4, respectively. We conclude that processing of the CS protein derived from the RTS,S antigen leads to the generation of HLA-DR-restricted epitopes that are similar to those identified previously using CD4 T cells from subjects immunized with and protected by attenuated sporozoites or exposed to infectious sporozoites. This may in part account for the protective efficacy of the RTS,S/AS vaccine.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Proteínas de Protozoários/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Sequência de Aminoácidos , Antígenos de Protozoários/imunologia , Células Cultivadas , Epitopos de Linfócito T/imunologia , Subtipos Sorológicos de HLA-DR/imunologia , Antígeno HLA-DR4/imunologia , Humanos , Imunização Secundária , Interferon gama/imunologia , Leucócitos Mononucleares/imunologia , Vacinas Antimaláricas/administração & dosagem , Dados de Sequência Molecular , Plasmodium falciparum/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Trombospondina 1/imunologia
13.
J Trauma ; 71(2 Suppl 2): S202-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21814088

RESUMO

Despite advances in resuscitation and surgical management of combat wounds, infection remains a concerning and potentially preventable complication of combat-related injuries. Interventions currently used to prevent these infections have not been either clearly defined or subjected to rigorous clinical trials. Current infection prevention measures and wound management practices are derived from retrospective review of wartime experiences, from civilian trauma data, and from in vitro and animal data. This update to the guidelines published in 2008 incorporates evidence that has become available since 2007. These guidelines focus on care provided within hours to days of injury, chiefly within the combat zone, to those combat-injured patients with open wounds or burns. New in this update are a consolidation of antimicrobial agent recommendations to a backbone of high-dose cefazolin with or without metronidazole for most postinjury indications and recommendations for redosing of antimicrobial agents, for use of negative pressure wound therapy, and for oxygen supplementation in flight.


Assuntos
Medicina Militar , Guerra , Infecção dos Ferimentos/prevenção & controle , Humanos , Guias de Prática Clínica como Assunto , Infecção dos Ferimentos/etiologia
14.
J Trauma ; 71(2 Suppl 2): S210-34, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21814089

RESUMO

Despite advances in resuscitation and surgical management of combat wounds, infection remains a concerning and potentially preventable complication of combat-related injuries. Interventions currently used to prevent these infections have not been either clearly defined or subjected to rigorous clinical trials. Current infection prevention measures and wound management practices are derived from retrospective review of wartime experiences, from civilian trauma data, and from in vitro and animal data. This update to the guidelines published in 2008 incorporates evidence that has become available since 2007. These guidelines focus on care provided within hours to days of injury, chiefly within the combat zone, to those combat-injured patients with open wounds or burns. New in this update are a consolidation of antimicrobial agent recommendations to a backbone of high-dose cefazolin with or without metronidazole for most postinjury indications, and recommendations for redosing of antimicrobial agents, for use of negative pressure wound therapy, and for oxygen supplementation in flight.


Assuntos
Medicina Militar , Guerra , Infecção dos Ferimentos/prevenção & controle , Antibacterianos/uso terapêutico , Humanos , Guias de Prática Clínica como Assunto , Infecção dos Ferimentos/etiologia
15.
PLoS One ; 6(7): e20775, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21779319

RESUMO

A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP)-specific CD4(+) T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM)) and/or central memory (T(CM)) CD4(+) T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM) and T(CM) cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+) T(E/EM) cells and of CD4(+) T(CM) cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+) T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+) T(E/EM) cells and of CD4(+) T(E/EM) cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM) and T(CM) cells are major producers of IL-2.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-2/metabolismo , Vacinas Antimaláricas/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Vacinas Antimaláricas/uso terapêutico , Masculino
17.
J Infect Dis ; 201(4): 580-9, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20078211

RESUMO

BACKGROUND: Patterns of expressed genes in the peripheral blood mononuclear cells of persons who were receiving RTS,S/AS01 or RTS,S/AS02 malaria vaccine and were undergoing experimental challenge with mosquito-borne falciparum malaria were examined to identify markers associated with protection. METHODS: Thirty-nine vaccine recipients were assessed at study entry; on the day of the third vaccination; at 24 h, 72 h, and 2 weeks after vaccination; and on day 5 after challenge. Of 39 vaccine recipients, 13 were protected and 26 were not. Eleven vaccine recipients exhibited delayed onset of parasitemia. All infectivity control subjects developed parasitemia. Prediction analysis of microarrays identified genes corresponding with protection. Gene set enrichment analysis identified sets of genes associated with protection after the third vaccination and before challenge. RESULTS: After the third vaccination and before challenge, differential expression of genes in the immunoproteasome pathway distinguished protected and nonprotected persons. At 5 days after challenge, differential expression of genes associated with programmed cell death distinguished between subjects protected and not protected from malaria blood-stage infection. CONCLUSIONS: The up-regulation of genes associated with the efficient processing of major histocompatibility complex peptides suggests a potential role of the vaccine in conferring major histocompatibility complex class 1-mediated protection and may represent a useful surrogate marker of vaccine efficacy without the need for challenge.


Assuntos
Complexo Principal de Histocompatibilidade/imunologia , Vacinas Antimaláricas/imunologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Adjuvantes Imunológicos/administração & dosagem , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Células Cultivadas , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Leucócitos Mononucleares/imunologia , Complexo Principal de Histocompatibilidade/genética , Vacinas Antimaláricas/administração & dosagem , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos
18.
Vaccine ; 28(31): 5135-44, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-19737527

RESUMO

Plasmodium falciparum Liver Stage Antigen 1 (LSA-1) is a pre-erythrocytic stage antigen. Our LSA-1 vaccine candidate is a recombinant protein with full-length C- and N-terminal flanking domains and two of the 17 amino acid repeats from the central repeat region termed "LSA-NRC." We describe the first Phase I/II study of this recombinant LSA-NRC protein formulated with either the AS01 or AS02 adjuvant system. We conducted an open-label Phase I/II study. Thirty-six healthy malaria-naïve adults received one of four formulations by intra-deltoid injection on a 0 and 1 month schedule; low dose (LD) LSA-NRC/AS01:10microg LSA-NRC/0.5ml AS01 (n=5), high dose (HD) LSA-NRC/AS01: 50microg LSA-NRC/0.5ml AS01 (n=13); LD LSA-NRC/AS02: 10microg LSA-NRC/0.5ml AS02 (n=5) and HD LSA-NRC/AS02: 50microg LSA-NRC/0.5ml AS02 (n=13). Two weeks post-second immunization, the high dose vaccinees and 6 non-immunized infectivity controls underwent experimental malaria sporozoite challenge. The vaccines showed a reassuring safety profile but were moderately reactogenic. There were no serious adverse events. All subjects seroconverted after the first immunization. Following the second immunization, LSA-1-specific CD4+ T cells producing two cytokines (IL-2 and IFN-gamma) were found by intra-cellular staining in all subjects in the LD LSA-NRC/AS01B group and in 3 of 5 subjects in the LD LSA-NRC/AS02 group. In contrast, the HD LSA-NRC/AS01 and HD LSA-NRC/AS02 group subjects had fewer LSA-1-specific CD4+ T cells, and minimal to no IFN-gamma responses. There was no increase in LSA-1-specific CD8+ T cells found in any group. Per protocol, 22 high dose vaccinees, but no low dose vaccinees, underwent P. falciparum homologous malaria challenge (3D7 clone). All vaccinees became parasitemic and there was no delay in their pre-patent period versus controls (p=0.95). LSA-NRC/AS01 and LSA-NRC/AS02 elicited antigen-specific antibody and CD4+ T cell responses, but elicited no protective immunity. Although the optimal antigen dose of LSA-NRC may not have been selected for the challenge portion of the protocol, further vaccine development based upon LSA-1 should not be excluded and should include alternative vaccine platforms able to elicit additional effector mechanisms such as CD8+ T cells.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Adjuvantes Imunológicos/farmacologia , Adulto , Anticorpos Antiprotozoários/sangue , Formação de Anticorpos , Feminino , Humanos , Imunidade Celular , Imunidade Humoral , Esquemas de Imunização , Imunização Secundária , Interferon gama/imunologia , Interleucina-2/imunologia , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Falciparum/imunologia , Masculino , Parasitemia/imunologia , Plasmodium falciparum/imunologia , Proteínas Recombinantes/imunologia , Esporozoítos/imunologia , Adulto Jovem
19.
PLoS One ; 4(7): e6465, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19649245

RESUMO

BACKGROUND: This study advances the clinical development of the RTS,S/AS01B candidate malaria vaccine to malaria endemic populations. As a primary objective it compares the safety and reactogenicity of RTS,S/AS01B to the more extensively evaluated RTS,S/AS02A vaccine. METHODOLOGY: A Phase IIb, single centre, double-blind, controlled trial of 6 months duration with a subsequent 6 month single-blind follow-up conducted in Kisumu West District, Kenya between August 2005 and August 2006. 255 healthy adults aged 18 to 35 years were randomized (1ratio1ratio1) to receive 3 doses of RTS,S/AS02A, RTS,S/AS01B or rabies vaccine (Rabipur; Chiron Behring GmbH) at months 0, 1, 2. The primary objective was the occurrence of severe (grade 3) solicited or unsolicited general (i.e. systemic) adverse events (AEs) during 7 days follow up after each vaccination. PRINCIPAL FINDINGS: Both candidate vaccines had a good safety profile and were well tolerated. One grade 3 systemic AE occurred within 7 days of vaccination (RTS,S/AS01B group). No unsolicited AEs or SAEs were related to vaccine. A marked increase in anti-CS antibody GMTs was observed post Dose 2 of both RTS,S/AS01B (31.6 EU/mL [95% CI: 23.9 to 41.6]) and RTS,S/AS02A (16.7 EU/mL [95% CI: 12.9 to 21.7]). A further increase was observed post Dose 3 in both the RTS,S/AS01B (41.4 EU/mL [95% CI: 31.7 to 54.2]) and RTS,S/AS02A (21.4 EU/mL [95% CI: 16.0 to 28.7]) groups. Anti-CS antibody GMTs were significantly greater with RTS,S/AS01B compared to RTS,S/AS02A at all time points post Dose 2 and Dose 3. Both candidate vaccines produced strong anti-HBs responses. Vaccine efficacy in the RTS,S/AS01B group was 29.5% (95% CI: -15.4 to 56.9, p = 0.164) and in the RTS,S/AS02A group 31.7% (95% CI: -11.6 to 58.2, p = 0.128). CONCLUSIONS: Both candidate malaria vaccines were well tolerated over a 12 month surveillance period. A more favorable immunogenicity profile was observed with RTS,S/AS01B than with RTS,S/AS02A. TRIAL REGISTRATION: Clinicaltrials.gov NCT00197054.


Assuntos
Vacinas Antimaláricas/uso terapêutico , Malária/prevenção & controle , Adulto , Método Duplo-Cego , Seguimentos , Humanos , Quênia/epidemiologia , Malária/epidemiologia , Vacinas Antimaláricas/efeitos adversos , Método Simples-Cego , Resultado do Tratamento
20.
J Infect Dis ; 200(3): 337-46, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19569965

RESUMO

BACKGROUND: To further increase the efficacy of malaria vaccine RTS,S/AS02A, we tested the RTS,S antigen formulated using the AS01B Adjuvant System (GlaxoSmithKline Biologicals). METHODS: In a double-blind, randomized trial, 102 healthy volunteers were evenly allocated to receive RTS,S/AS01B or RTS,S/AS02A vaccine at months 0, 1, and 2 of the study, followed by malaria challenge. Protected vaccine recipients were rechallenged 5 months later. RESULTS: RTS,S/AS01B and RTS,S/AS02A were well tolerated and were safe. The efficacy of RTS,S/AS01B and RTS,S/AS02A was 50% (95% confidence interval [CI], 32.9%-67.1%) and 32% (95% CI, 17.6%-47.6%), respectively. At the time of initial challenge, the RTS,S/AS01B group had greater circumsporozoite protein (CSP)-specific immune responses, including higher immunoglobulin (Ig) G titers, higher numbers of CSP-specific CD4(+) T cells expressing 2 activation markers (interleukin-2, interferon [IFN]-gamma, tumor necrosis factor-alpha, or CD40L), and more ex vivo IFN-gamma enzyme-linked immunospots (ELISPOTs) than did the RTS,S/AS02A group. Protected vaccine recipients had a higher CSP-specific IgG titer (geometric mean titer, 188 vs 73 mug/mL; P < .001), higher numbers of CSP-specific CD4(+) T cells per 10(6) CD4(+) T cells (median, 963 vs 308 CSP-specific CD4(+) T cells/10(6) CD4(+) T cells; P < .001), and higher numbers of ex vivo IFN-gamma ELISPOTs (mean, 212 vs 96 spots/million cells; P < .001). At rechallenge, 4 of 9 vaccine recipients in each group were still completely protected. CONCLUSIONS: The RTS,S/AS01B malaria vaccine warrants comparative field trials with RTS,S/AS02A to determine the best formulation for the protection of children and infants. The association between complete protection and immune responses is a potential tool for further optimization of protection. Trial registration. ClinicalTrials.gov identifier NCT00075049.


Assuntos
Vacinas Antimaláricas , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Adulto , Animais , Anticorpos Antiprotozoários/sangue , Estudos Transversais , Método Duplo-Cego , Seguimentos , Humanos , Vacinas Antimaláricas/efeitos adversos , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/normas , Malária Falciparum/imunologia , Moçambique/epidemiologia , Parasitemia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...