Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 10(4)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316904

RESUMO

PURPOSE: molecular testing is often indicated for recently transfused patients. However, there are no guidelines regarding the potential interference from donor DNA or whether it is necessary to wait for a period of time post-transfusion prior to genetic testing. While the majority of patients are transfused in the non-trauma setting using leukoreduced (LR) red blood cell products, the degree of leukoreduction varies among centers and is not universally practiced. METHODS: whole blood units collected from anonymous donors were used in an in vitro transfusion model. One unit was split: half being leukoreduced simulating a leukopenic recipient and half left untreated. Donors were simulated by leukoreduced, partially leukoreduced (PLR), or non-leukoreduced units, transfused in 2, 5, or 16 unit equivalents. DNA from the combinations were subjected to short tandem repeat (STR) analysis for chimerism detection. RESULTS: donor DNA was not detectable in any of the LR combinations, but detected in the PLR combinations, ranging from 0.1 to 1.5% donor DNA in the immunocompetent recipient and 6.3-27.8% in the leukopenic recipient. Non-LR donor DNA was also detected (13-95%). CONCLUSION: donor-derived DNA from leukoreduced blood products is unlikely to interfere with the interpretation of germline genetic testing in immunocompetent recipients but may interfere in immunocompromised recipients.

2.
J Appl Lab Med ; 5(3): 467-479, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32445360

RESUMO

BACKGROUND: Deafness and hearing loss are common conditions that can be seen independently or as part of a syndrome and are often mediated by genetic causes. We sought to develop and validate a hereditary hearing loss panel (HHLP) to detect single nucleotide variants (SNVs), insertions and deletions (indels), and copy number variants (CNVs) in 166 genes related to nonsyndromic and syndromic hearing loss. METHODS: We developed a custom-capture next-generation sequencing (NGS) reagent to detect all coding regions, ±10 flanking bp, for the 166 genes related to nonsyndromic and syndromic hearing loss. Our validation consisted of testing 52 samples to establish accuracy, reproducibility, and analytical sensitivity. In addition to NGS, supplementary methods, including multiplex ligation-dependent probe amplification, long-range PCR, and Sanger sequencing, were used to ensure coverage of regions that had high complexity or homology. RESULTS: We observed 100% positive and negative percentage agreement for detection of SNVs (n = 362), small indels (1-22 bp, n = 25), and CNVs (gains, n = 8; losses, n = 17). Finally, we showed that this assay was able to detect variants with a variant allele frequency ≥20% for SNVs and indels and ≥30% to 35% for CNVs. CONCLUSIONS: We validated an HHLP that detects SNVs, indels, and CNVs in 166 genes related to syndromic and nonsyndromic hearing loss. The results of this assay can be utilized to confirm a diagnosis of hearing loss and related syndromic disorders associated with known causal genes.


Assuntos
Predisposição Genética para Doença , Testes Genéticos , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Sequenciamento de Nucleotídeos em Larga Escala , Alelos , Substituição de Aminoácidos , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudos de Associação Genética , Testes Genéticos/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Técnicas de Diagnóstico Molecular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...