Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8069, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202435

RESUMO

Gait biofeedback is a well-studied strategy to reduce gait impairments such as propulsion deficits or asymmetric step lengths. With biofeedback, participants alter their walking to reach the desired magnitude of a specific parameter (the biofeedback target) with each step. Biofeedback of anterior ground reaction force and step length is commonly used in post-stroke gait training as these variables are associated with self-selected gait speed, fall risk, and the energy cost of walking. However, biofeedback targets are often set as a function of an individual's baseline walking pattern, which may not reflect the ideal magnitude of that gait parameter. Here we developed prediction models based on speed, leg length, mass, sex, and age to predict anterior ground reaction force and step length of neurotypical adults as a possible method for personalized biofeedback. Prediction of these values on an independent dataset demonstrated strong agreement with actual values, indicating that neurotypical anterior ground reaction forces can be estimated from an individual's leg length, mass, and gait speed, and step lengths can be estimated from individual's leg length, mass, age, sex, and gait speed. Unlike approaches that rely on an individual's baseline gait, this approach provides a standardized method to personalize gait biofeedback targets based on the walking patterns exhibited by neurotypical individuals with similar characteristics walking at similar speeds without the risk of over- or underestimating the ideal values that could limit feedback-mediated reductions in gait impairments.


Assuntos
Acidente Vascular Cerebral , Velocidade de Caminhada , Humanos , Adulto , Marcha , Caminhada , Biorretroalimentação Psicológica/métodos , Fenômenos Biomecânicos
2.
J Neuroeng Rehabil ; 20(1): 14, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36703214

RESUMO

BACKGROUND: Gait training at fast speeds is recommended to reduce walking activity limitations post-stroke. Fast walking may also reduce gait kinematic impairments post-stroke. However, it is unknown if differences in gait kinematics between people post-stroke and neurotypical adults decrease when walking at faster speeds. OBJECTIVE: To determine the effect of faster walking speeds on gait kinematics post-stroke relative to neurotypical adults walking at similar speeds. METHODS: We performed a secondary analysis with data from 28 people post-stroke and 50 neurotypical adults treadmill walking at multiple speeds. We evaluated the effects of speed and group on individual spatiotemporal and kinematic metrics and performed k-means clustering with all metrics at self-selected and fast speeds. RESULTS: People post-stroke decreased step length asymmetry and trailing limb angle impairment, reducing between-group differences at fast speeds. Speed-dependent changes in peak swing knee flexion, hip hiking, and temporal asymmetries exaggerated between-group differences. Our clustering analyses revealed two clusters. One represented neurotypical gait behavior, composed of neurotypical and post-stroke participants. The other characterized stroke gait behavior-comprised entirely of participants post-stroke with smaller lower extremity Fugl-Meyer scores than the post-stroke participants in the neurotypical gait behavior cluster. Cluster composition was largely consistent at both speeds, and the distance between clusters increased at fast speeds. CONCLUSIONS: The biomechanical effect of fast walking post-stroke varied across individual gait metrics. For participants within the stroke gait behavior cluster, walking faster led to an overall gait pattern more different than neurotypical adults compared to the self-selected speed. This suggests that to potentiate the biomechanical benefits of walking at faster speeds and improve the overall gait pattern post-stroke, gait metrics with smaller speed-dependent changes may need to be specifically targeted within the context of fast walking.


Assuntos
Benchmarking , Acidente Vascular Cerebral , Humanos , Adulto , Marcha , Caminhada , Velocidade de Caminhada , Extremidade Inferior , Acidente Vascular Cerebral/complicações , Fenômenos Biomecânicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...