Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Compr Rev Food Sci Food Saf ; 18(3): 738-752, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-33336919

RESUMO

The acceptance of many foods is related to traditional cooking practices, which create taste and texture and are important to digestibility, preservation, and the reduction of foodborne illnesses. A wide range of compounds are formed during the cooking of foods, a number of these have been shown to lead to adverse effects in classical toxicological models and are known as food processing contaminants (FPC). It is essential that the presence and effects of such compounds alone and in combination within the diet are understood such that proportionate risk management measures can be developed, while taking a holistic view across the whole value chain. Furan and alkylfurans (principally 2- and 3-methylfuran) are highly volatile FPC, which are formed in a wide range of foods at low amounts. The focus of research to-date has been on those foods, which have been identified to be most consequential in terms of being sources of exposure, namely jarred and canned foods for infants and young children (meals and drinks) and coffee (roast and ground, soluble). This report presents (i) new industry data on the occurrence of furan and methylfurans in selected food categories following previous coffee studies, (ii) the most salient parameters that impact furan formation, and (iii) aspects of importance for the risk assessment.

2.
Artigo em Inglês | MEDLINE | ID: mdl-27143443

RESUMO

Recently, reports have been published on the occurrence of chlorate mainly in fruits and vegetables. Chlorate is a by-product of chlorinating agents used to disinfect water, and can be expected to be found in varying concentrations in drinking water. Data on potable water taken at 39 sampling points across Europe showed chlorate to range from < 0.003 to 0.803 mg l(-1) with a mean of 0.145 mg l(-1). Chlorate, however, can also be used as a pesticide, but authorisation was withdrawn in the European Union (EU), resulting in a default maximum residue limit (MRL) for foods of 0.01 mg kg(-1). This default MRL has now led to significant problems in the EU, where routinely disinfected water, used in the preparation of food products such as vegetables or fruits, leaves chlorate residues in excess of the default MRL, and in strict legal terms renders the food unmarketable. Due to the paucity of data on the chlorate content of prepared foods in general, we collated chlorate data on more than 3400 samples of mainly prepared foods, including dairy products, meats, fruits, vegetables and different food ingredients/additives. In total, 50.5% of the food samples contained chlorate above 0.01 mg kg(-1), albeit not due to the use of chlorate as a pesticide but mainly due to the occurrence of chlorate as an unavoidable disinfectant by-product. A further entry point of chlorate into foods may be via additives/ingredients that may contain chlorate as a by-product of the manufacturing process (e.g. electrolysis). Of the positive samples in this study, 22.4% revealed chlorate above 0.1 mg kg(-1). In the absence of EU levels for chlorate in water, any future EU regulations must consider the already available WHO guideline value of 0.7 mg l(-1) in potable water, and the continued importance of the usage of oxyhalides for disinfection purposes.


Assuntos
Cloratos/análise , Água Potável/química , Análise de Alimentos , Contaminação de Alimentos/análise , Manipulação de Alimentos , Indústria Alimentícia , Cromatografia Líquida de Alta Pressão , Laticínios/análise , Desinfetantes , Europa (Continente) , Fast Foods/análise , Frutas/química , Humanos , Lactente , Alimentos Infantis/análise , Concentração Máxima Permitida , Carne/análise , Espectrometria de Massas em Tandem , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...