Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 69, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38183488

RESUMO

While glycoside hydrolase family 1 (GH1) enzymes mostly catalyze hydrolysis reactions, rice Os9BGlu31 preferentially catalyzes transglycosylation to transfer a glucosyl moiety to another aglycone moiety to form a new glycosylated compound through a retaining mechanism. In this study, Os9BGlu31 was used to synthesize eight phenolic acid glucosyl esters, which were evaluated for activities in cholangiocarcinoma cells. The transglycosylation products of Os9BGlu31 wild type and its mutant variants were detected, produced on a milligram scale, and purified, and their structures were characterized by NMR spectroscopy. The transglycosylation products were evaluated by antioxidant and anti-proliferative assays, followed by an anti-migration assay for the selected phenolic acid glucosyl ester. Os9BGlu31 mutants produced higher yield and activity than wild-type enzymes on phenolic acids to produce phenolic acid glucosyl esters. Among these, gallic acid glucosyl ester (ß-glucogallin) had the highest antioxidant activity and anti-proliferative activity in cholangiocarcinoma cells. It also inhibited the migration of cholangiocarcinoma cells. Our study demonstrated that rice Os9BGlu31 transglucosidase is a promising enzyme for glycosylation of bioactive compounds in one-step reactions and provides evidence that ß-glucogallin inhibits cell proliferation and migration of cholangiocarcinoma cells. KEY POINTS: • Os9BGlu31 transglucosidases produced phenolic acid glucosyl esters for bioactivity testing. • Phenolic acid glucosyl esters were tested for cytotoxicity in cholangiocarcinoma cells. • ß-Glucogallin displayed the highest inhibition of cholangiocarcinoma cell growth.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Oryza , Antioxidantes , Ésteres , Ductos Biliares Intra-Hepáticos
2.
Int J Paediatr Dent ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38013205

RESUMO

BACKGROUND: In order to generate a normal set of teeth, fine-tuning of Wnt/ß-catenin signaling is required, in which WNT ligands bind to their inhibitors or WNT inhibitors bind to their co-receptors. Lrp4 regulates the number of teeth and their morphology by modulating Wnt/ß-catenin signaling as a Wnt/ß-catenin activator or inhibitor, depending on its interactions with the partner proteins, such as Sostdc1 and Dkk1. AIM: To investigate genetic etiologies of dental anomalies involving LRP4 in a Thai cohort of 250 children and adults with dental anomalies. DESIGN: Oral and radiographic examinations and whole exome sequencing were performed for every patient. RESULTS: Two novel (p.Leu1356Arg and p.Ala1702Gly) and three recurrent (p.Arg263His, p.Gly1314Ser, and p.Asn1385Ser) rare variants in low-density lipoprotein receptor-related protein 4 (LRP4: MIM 604270) were identified in 11 patients. Oral exostoses were observed in five patients. CONCLUSION: Antagonism of Bmp signaling by Sostdc1 requires the presence of Lrp4. Mice lacking Lrp4 have been demonstrated to have alteration of Wnt-Bmp-Shh signaling and an abnormal number of incisors. Therefore, the LRP4 mutations found in our patients may disrupt Wnt-Bmp-Shh signaling, thereby resulting in dental anomalies and oral exostoses. Root maldevelopment in the patients suggests an important role of LRP4 in root morphogenesis.

4.
Chem Biol Interact ; 384: 110717, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726065

RESUMO

The crystal structure of the Thermoanaerobacterium xylanolyticum in glycoside hydrolase family 116 (TxGH116) ß-glucosidase provides a structural model for human GBA2 glucosylceramidase, an enzyme defective in hereditary spastic paraplegia and a potential therapeutic target for treating Gaucher disease. To assess the therapeutic potential of known inhibitors, the X-ray structure of TxGH116 in complex with isofagomine (IFG) was determined at 2.0 Å resolution and showed the IFG bound in a relaxed chair conformation. The binding of IFG and 7 other iminosugar inhibitors to wild-type and mutant enzymes (Asp508His and Arg786His) mimicking GBA2 pathogenic variants was then evaluated computationally by two-layered ONIOM calculations (at the B3LYP:PM7 level). Calculations showed that six charged residues, Glu441, Asp452, His507, Asp593, Glu777, and Arg786 influence inhibitor binding most. His507, Glu777 and Arg786, form strong hydrogen bonds with the inhibitors (∼1.4-1.6 Å). Thus, the missense mutation of one of these residues in Arg786His has a greater effect on the interaction energies for all inhibitors compared to Asp508His. In line with the experimental data for the inhibitors that have been tested, the favorable interaction energy between the inhibitors and the TxGH116 protein followed the trend: isofagomine > 1-deoxynojirimycin > glucoimidazole > N-butyl-deoxynojirimycin ≈ N-nonyl-deoxynojirimycin > conduritol B epoxide ≈ azepane 1 > azepane 2. The obtained structural and energetic properties and comparison to the GBA2 model can lead to understanding of structural requirement for inhibitor binding in GH116 to aid the design of high potency GBA2 inhibitors.

5.
Nat Prod Res ; : 1-9, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526601

RESUMO

In the present study, we derivatized several hydroxycinnamic and hydroxybenzoic acids to phenolic amides (PAMs) via one step BOP mediated amide coupling reactions. Fifteen PAMs were synthesized in >40% yields and were screened for their cytotoxic activities against four cancer cell lines: THP-1 (leukaemia), HeLa (cervical), HepG2 (liver), and MCF-7 (breast), in comparison to 5-flurouracil (5-FU). Four amides showed IC50 ranging from 5 to 55 µM against all four cell lines. In contrast, tetradecyl-gallic-amide (13) affected only THP-1 leukaemia cells with IC50 of 3.08 µM. The activities of these compounds support the promise of phenolic amides as anticancer agents.

6.
Plant Physiol ; 193(2): 1109-1125, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37341542

RESUMO

ß-Galactosidases (Bgals) remove terminal ß-D-galactosyl residues from the nonreducing ends of ß-D-galactosidases and oligosaccharides. Bgals are present in bacteria, fungi, animals, and plants and have various functions. Despite the many studies on the evolution of BGALs in plants, their functions remain obscure. Here, we identified rice (Oryza sativa) ß-galactosidase9 (OsBGAL9) as a direct target of the heat stress-induced transcription factor SPOTTED-LEAF7 (OsSPL7), as demonstrated by protoplast transactivation analysis and yeast 1-hybrid and electrophoretic mobility shift assays. Knockout plants for OsBGAL9 (Osbgal9) showed short stature and growth retardation. Histochemical ß-glucuronidase (GUS) analysis of transgenic lines harboring an OsBGAL9pro:GUS reporter construct revealed that OsBGAL9 is mainly expressed in internodes at the mature stage. OsBGAL9 expression was barely detectable in seedlings under normal conditions but increased in response to biotic and abiotic stresses. Ectopic expression of OsBGAL9 enhanced resistance to the rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, as well as tolerance to cold and heat stress, while Osbgal9 mutant plants showed the opposite phenotypes. OsBGAL9 localized to the cell wall, suggesting that OsBGAL9 and its plant putative orthologs likely evolved functions distinct from those of its closely related animal enzymes. Enzyme activity assays and analysis of the cell wall composition of OsBGAL9 overexpression and mutant plants indicated that OsBGAL9 has activity toward galactose residues of arabinogalactan proteins (AGPs). Our study clearly demonstrates a role for a member of the BGAL family in AGP processing during plant development and stress responses.


Assuntos
Oryza , Xanthomonas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Xanthomonas/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
7.
ACS Catal ; 13(9): 5850-5863, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37180965

RESUMO

Retaining glycoside hydrolases use acid/base catalysis with an enzymatic acid/base protonating the glycosidic bond oxygen to facilitate leaving-group departure alongside attack by a catalytic nucleophile to form a covalent intermediate. Generally, this acid/base protonates the oxygen laterally with respect to the sugar ring, which places the catalytic acid/base and nucleophile carboxylates within about 4.5-6.5 Å of each other. However, in glycoside hydrolase (GH) family 116, including disease-related human acid ß-glucosidase 2 (GBA2), the distance between the catalytic acid/base and the nucleophile is around 8 Å (PDB: 5BVU) and the catalytic acid/base appears to be above the plane of the pyranose ring, rather than being lateral to that plane, which could have catalytic consequences. However, no structure of an enzyme-substrate complex is available for this GH family. Here, we report the structures of Thermoanaerobacterium xylanolyticum ß-glucosidase (TxGH116) D593N acid/base mutant in complexes with cellobiose and laminaribiose and its catalytic mechanism. We confirm that the amide hydrogen bonding to the glycosidic oxygen is in a perpendicular rather than lateral orientation. Quantum mechanics/molecular mechanics (QM/MM) simulations of the glycosylation half-reaction in wild-type TxGH116 indicate that the substrate binds with the nonreducing glucose residue in an unusual relaxed 4C1 chair at the -1 subsite. Nevertheless, the reaction can still proceed through a 4H3 half-chair transition state, as in classical retaining ß-glucosidases, as the catalytic acid D593 protonates the perpendicular electron pair. The glucose C6OH is locked in a gauche, trans orientation with respect to the C5-O5 and C4-C5 bonds to facilitate perpendicular protonation. These data imply a unique protonation trajectory in Clan-O glycoside hydrolases, which has strong implications for the design of inhibitors specific to either lateral protonators, such as human GBA1, or perpendicular protonators, such as human GBA2.

8.
ACS Appl Bio Mater ; 6(4): 1546-1555, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921070

RESUMO

In this study, we developed functional nanomaterials via a phenolic-enabled nanotechnology strategy for hypoxia detection employing quercetin (QCT), an abundant flavonoid, as a polyphenolic system. The nano form of QCT was stabilized by coating it with polyethylene glycol (PEG) before loading it with a flavylium dye (Flav) as a pH indicator. The nanosystem, Flav@QCT-PEG, collapsed when it was in an acidic environment, i.e., pH 5, leading to the release of Flav, which activated the fluorescent signal. Therefore, Flav@QCT-PEG was applied to detect hypoxic tumors, known to be acidic, and responded to hypoxic environments in a dose- and time-dependent manner.


Assuntos
Hipóxia , Nanopartículas , Neoplasias , Quercetina , Quercetina/química , Neoplasias/diagnóstico , Neoplasias/patologia , Hipóxia/diagnóstico , Polietilenoglicóis/química , Antocianinas/química , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Fluorescência
9.
Genes (Basel) ; 14(2)2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36833249

RESUMO

One of the most important steps in post-translational modifications of collagen type I chains is the hydroxylation of carbon-3 of proline residues by prolyl-3-hydroxylase-1 (P3H1). Genetic variants in P3H1 have been reported to cause autosomal recessive osteogenesis imperfecta (OI) type VIII. Clinical and radiographic examinations, whole-exome sequencing (WES), and bioinformatic analysis were performed in 11 Thai children of Karen descent affected by multiple bone fractures. Clinical and radiographic findings in these patients fit OI type VIII. Phenotypic variability is evident. WES identified an intronic homozygous variant (chr1:43212857A > G; NM_022356.4:c.2055 + 86A > G) in P3H1 in all patients, with parents in each patient being heterozygous for the variant. This variant is predicted to generate a new "CAG" splice acceptor sequence, resulting in the incorporation of an extra exon that leads to a frameshift in the final exon and subsequent non-functional P3H1 isoform a. Alternative splicing of P3H1 resulting in the absence of functional P3H1 caused OI type VIII in 11 Thai children of Karen descent. This variant appears to be specific to the Karen population. Our study emphasizes the significance of considering intronic variants.


Assuntos
Osteogênese Imperfeita , Prolil Hidroxilases , Criança , Humanos , Processamento Alternativo , Colágeno Tipo I/genética , Mutação , Osteogênese Imperfeita/genética , Processamento de Proteína Pós-Traducional , Prolil Hidroxilases/genética
10.
Biology (Basel) ; 12(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36829498

RESUMO

BACKGROUND: Low density lipoprotein receptor-related protein 4 (LRP4; MIM 604270) modulates WNT/ß-catenin signaling, through its binding of WNT ligands, and to co-receptors LRP5/6, and WNT inhibitors DKK1, SOSTDC1, and SOST. LRP4 binds to SOSTDC1 and WNT proteins establishing a negative feedback loop between Wnt/ß-catenin, Bmp, and Shh signaling during the bud and cap stages of tooth development. Consistent with a critical role for this complex in developing teeth, mice lacking Lrp4 or Sostdc1 have multiple dental anomalies including supernumerary incisors and molars. However, there is limited evidence supporting variants in LRP4 in human dental pathologies. METHODS: We clinically, radiographically, and molecularly investigated 94 Thai patients with mesiodens. Lrp4 mutant mice were generated in order to study the effects of aberrant Lrp4 expression in mice. RESULTS: Whole exome and Sanger sequencing identified three extremely rare variants (c.4154A>G, p.Asn1385Ser; c.3940G>A, p.Gly1314Ser; and c.448G>A, p.Asp150Asn) in LRP4 in seven patients with mesiodens. Two patients had oral exostoses and two patients had root maldevelopments. Supernumerary incisors were observed in Lrp4 mutant mice. CONCLUSIONS: Our study implicates heterozygous genetic variants in LRP4 as contributing factors in the presentation of mesiodens, root maldevelopments, and oral exostoses, possibly as a result of altered WNT/ß-catenin-BMP-SHH signaling.

11.
Clin Genet ; 103(6): 714-716, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36601665

RESUMO

A mutation in DKK1 gene leads to inhibitory DKK1 function, over-activation of WNT/ß-catenin signaling, disruptive development of dental epithelium, and subsequent mesiodens formation.


Assuntos
Anormalidades Dentárias , Humanos , Via de Sinalização Wnt , beta Catenina , Peptídeos e Proteínas de Sinalização Intercelular
12.
Horm Res Paediatr ; 96(4): 432-438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36626889

RESUMO

INTRODUCTION: Inactivating mutations of the calcium-sensing receptor (CASR) gene result in neonatal severe hyperparathyroidism (NSHPT). Total parathyroidectomy is an effective way to control life-threatening hypercalcemia in NSHPT but leads to permanent hypoparathyroidism. An alternative surgical option is subtotal parathyroidectomy. However, few cases were reported in the literature. Here, we report two unrelated NSHPT patients, one with a novel homozygous mutation (c.1817T>C; p.Leu606Pro) in CASRand the other with heterozygous for the same mutation who also carried two rare intronic variants in CASR. The outcomes of subtotal parathyroidectomy in these patients are also described. CASE PRESENTATION: Two infants presented with an alteration of consciousness, respiratory distress, and bradycardia. Severe hypercalcemia, hypophosphatemia, and markedly elevated parathyroid hormone levels were identified, suggesting NSHPT. Cinacalcet was unable to control calcium (Ca) levels of both patients. A novel heterozygous and homozygous missense mutation c.1817T>C; p.Leu606Pro was identified in patients 1 and 2, respectively. Based on the model prediction, proline substitution at Leu606 is likely to disrupt conversion between the active and inactive conformations at the extracellular to transmembrane domain interface of CASR. In addition, two extremely rare intronic variants in CASR (chr3:g.122180314A>G and chr3:g.122251601G>A, based on GRCh38) were identified in patient 1 and his mother. These variants might have contributed to the clinical manifestations of patient 1 who was heterozygous for the c.1817T>C; p.Leu606Pro variant. Subtotal parathyroidectomy was performed by removing three and a half parathyroid glands. So far, patient 1 has been in normocalcemia for 5 years. Patient 2 was in normocalcemia for 16 months after surgery and subsequently developed mild hypoparathyroidism which required only low-dose calcitriol treatment. CONCLUSION: We report a novel heterozygous and homozygous missense variant (c.1817T>C; p.Leu606Pro) in CASR in two NSHPT patients. The mutation likely disrupts conformational changes of CASR and results in cinacalcet unresponsiveness. Intronic variants in CASR identified in the patient with heterozygous variant might have contributed to the clinical manifestations of the patient. Although total parathyroidectomy is widely accepted as a standard treatment for NSHPT, we demonstrate that subtotal parathyroidectomy is also an effective procedure to normalize Ca levels and allow these patients to be in normocalcemia or mild hypoparathyroidism, which is simply controlled by low-dose calcitriol treatment. Subtotal parathyroidectomy appeared to be an effective treatment for NSHPT regardless of the molecular etiologies.


Assuntos
Hipercalcemia , Hiperparatireoidismo Primário , Hipoparatireoidismo , Recém-Nascido , Lactente , Humanos , Cinacalcete/uso terapêutico , Cálcio , Hipercalcemia/genética , Hipercalcemia/tratamento farmacológico , Receptores de Detecção de Cálcio/genética , Paratireoidectomia , Calcitriol , Hiperparatireoidismo Primário/genética , Mutação , Hipoparatireoidismo/genética , Hipoparatireoidismo/tratamento farmacológico
13.
Eur J Orthod ; 45(3): 317-323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36374649

RESUMO

BACKGROUND: Canonical and non-canonical WNT signaling are important for odontogenesis. WNT ligand secretion mediator (WLS; MIM611514) is required to transport lipid-modified WNT proteins from the Golgi to the cell membrane, where canonical and non-canonical WNT proteins are released into the extracellular milieu. Biallelic pathogenic variants in WLS are implicated in autosomal recessive Zaki syndrome (ZKS; MIM 619648), the only genetic condition known to be caused by pathogenic variants in WLS. OBJECTIVE: To investigate molecular etiology of dental anomalies in 250 patients with or without oral exostoses. PATIENTS AND METHODS: Clinical and radiographic examination, and whole exome sequencing, were performed in the case of 250 patients with dental anomalies with or without oral exostoses. RESULTS: Four extremely rare heterozygous missense variants (p.Ile20Thr, p.Met46Leu, p.Ser453Ile and p.Leu516Phe) in WLS were identified in 11 patients with dental anomalies. In five of these patients, a torus palatinus or a torus mandibularis was observed. CONCLUSION: We report for the first time the heterozygous WLS variants in patients with dental anomalies. Root maldevelopments in patients with WLS variants supports the role of canonical and non-canonical WNT signaling in root development. We also show that variants in WLS were implicated in torus palatinus and torus mandibularis. In addition, this is the first time that heterozygous carriers of WLS variants were found to manifest phenotypes. WLS variants were likely to have adverse effects on the concentration of WNT ligands delivered to the cell membrane, resulting in aberrant canonical and non-canonical WNT signaling, and subsequent phenotypes. LIMITATIONS OF THE STUDY: Patient's positioning during the acquisition of panoramic radiography might have affected the appearance of the tooth structures. If we had all family members of each patient to study co-segregation between genotype and phenotype, it would have strengthened the association of WLS variants and the phenotypes.


Assuntos
Exostose , Dente , Humanos , Exostose/patologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Odontogênese/genética , Mutação
14.
Biochem Biophys Res Commun ; 636(Pt 1): 147-154, 2022 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332477

RESUMO

Mucopolysaccharidosis type I Hurler syndrome (MPS IH) is a severe lysosomal storage disorder caused by alpha-l-iduronidase (IDUA) deficiency. Premature truncation mutations (PTC) are the most common (50%-70%) type of IDUA mutations and correlate with MPS IH. Nonsense suppression therapy is a therapeutic approach that aims to induce stop codon readthrough. The different ability of gentamicin to bind mutant mRNA in readthrough is determined by nucleotide sequence (PTC context: UGA > UAG > UAA) and inserted amino acid including the nucleotide position +4 of the PTC, as well as the mRNA secondary structure. We used COS-7 cells to investigate the functional characteristics of p.Q500X and p.R619X, IDUA variants and the effects of gentamicin in inducing stop codon readthrough of seven IDUA variants including p.Q500X, p.R619X, p.Q70X, p.E299X, p.W312X, p.Q380X, and p.W402X. Moreover, we performed prediction of RNA secondary structure using the online tool RNAfold. We found that cells treated with gentamicin showed significantly enhanced full-length IDUA expression and restored IDUA activity, in a dose-dependent manner, only in cells expressing cDNA with W312X, Q380X, W402X, and R619X. Among the readthrough-responsive variants, we observed UGA PTC in W312X, W402X and R619X; and UAG PTC with C at nucleotide +4 in Q380X. Changes of RNA secondary structure were noted only in mutants with readthrough-responsive variants including W312X, Q380X, W402X, and R619X. Additional preclinical studies of selected PTCs with potential readthrough, using drugs with less oto-nephrotoxicity, in patient's skin fibroblasts and animal model are necessary for the premise of personalized medicine.


Assuntos
Iduronidase , Mucopolissacaridose I , Chlorocebus aethiops , Animais , Iduronidase/genética , Códon sem Sentido/genética , Gentamicinas/farmacologia , Códon de Terminação/genética , Células COS , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/genética , Mucopolissacaridose I/metabolismo , Mutação , RNA Mensageiro/metabolismo , Nucleotídeos/uso terapêutico
15.
Nat Commun ; 13(1): 5577, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151080

RESUMO

In the barley ß-D-glucan glucohydrolase, a glycoside hydrolase family 3 (GH3) enzyme, the Trp286/Trp434 clamp ensures ß-D-glucosides binding, which is fundamental for substrate hydrolysis during plant growth and development. We employ mutagenesis, high-resolution X-ray crystallography, and multi-scale molecular modelling methods to examine the binding and conformational behaviour of isomeric ß-D-glucosides during substrate-product assisted processive catalysis that operates in GH3 hydrolases. Enzyme kinetics reveals that the W434H mutant retains broad specificity, while W434A behaves as a strict (1,3)-ß-D-glucosidase. Investigations of reactant movements on the nanoscale reveal that processivity is sensitive to mutation-specific alterations of the tryptophan clamp. While wild-type and W434H utilise a lateral cavity for glucose displacement and sliding of (1,3)-linked hydrolytic products through the catalytic site without dissociation, consistent with their high hydrolytic rates, W434A does not adopt processive catalysis. Phylogenomic analyses of GH3 hydrolases disclose the evolutionary advantage of the tryptophan clamp that confers broad specificity, high catalytic efficiency, and processivity.


Assuntos
Glicosídeo Hidrolases , Triptofano , Cristalografia por Raios X , Glucose , Glucosidases/química , Glucosídeos , Glicosídeo Hidrolases/metabolismo , Glicosídeos , Cinética , Plantas/metabolismo , Especificidade por Substrato
16.
Arch Oral Biol ; 142: 105514, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35961235

RESUMO

OBJECTIVE: The objective of this study was to investigate molecular etiologies of oral exostoses and dental anomalies in 14 patients from eight families. METHODS: Oral and radiographic examinations were performed on every patient. Whole exome and Sanger sequencing were performed on DNA of the patients, the unaffected parents and unaffected siblings. LRP6 mutant proteins were modeled and analyzed. RESULTS: Five mutations in LRP6, including four missense (p.Glu72Lys, p.Lys82Asn, Tyr418His, and p.Ile773Val) and one nonsense mutation (p.Arg32Ter), were identified. These mutations have not been reported to be associated with dental anomalies or oral exostoses. Oral features included a variety of oral exostoses (7 of the 14 patients), root defects (6 of the 14 patients), and tooth agenesis (5 of the 14 patients). Less common dental anomalies included microdontia, tooth fusion, odontomas, and mesiodens. Analysis of the protein models of the five LRP6 mutations shed light on their likely impact on LRP6 protein structure and function. CONCLUSION: Fourteen patients with five LRP6 mutations, including two recurrent mutations and three novel ones, are reported. Our study shows for the first time that mutations in LRP6 are associated with mesiodens, fusion of teeth, odontomas, microdontia, long roots, molars with unseparated roots, and taurodontism.


Assuntos
Exostose , Odontoma , Anormalidades Dentárias , Dente Supranumerário , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Anormalidades Dentárias/genética , Via de Sinalização Wnt
17.
Clin Genet ; 102(4): 333-338, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35754005

RESUMO

WNT/ß-catenin and BMP signaling pathways play important roles in the process of tooth development. Dysregulation of WNT/ß-catenin and BMP signaling is implicated in a number of human malformations, including dental anomalies. Whole exome and Sanger sequencing identified seven patients with LRP5 mutations (p.Asn1121Asp, p.Asp856Asn, p.Val1433Met, and p.Val1245Met) and six patients with BMP4 mutations (p.Asn150Lys, p.Gly168Arg, p.Arg269Gln, and p.Ala42Glu). All patients were affected with isolated dental anomalies (dental anomalies with no other structural defects), including mesiodens, tooth agenesis, unseparated roots, narrow roots, shortened and tapered roots, and taurodontism. Five patients with LRP5 and one with BMP4 mutations had oral exostoses. Protein models of LRP5 mutations indicate the possible functional effects of the mutations. Here we report for the first time that mutations in LRP5 are associated with dental anomalies. LRP5 appears to be the first gene related to pathogenesis of mesiodens. We also show for the first time that in addition to tooth agenesis, mutations in BMP4 are also implicated in root maldevelopment and torus mandibularis. Sharing of the phenotypes of the patients with LRP5 and BMP4 mutations, which include root maldevelopment, tooth agenesis, and torus mandibularis, implicates cross talks between the WNT/ß-catenin and BMP signaling pathways, especially during root development.


Assuntos
Anodontia , Proteína Morfogenética Óssea 4 , Exostose , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Anormalidades Dentárias , Anodontia/genética , Proteína Morfogenética Óssea 4/genética , Exostose/genética , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Anormalidades Dentárias/genética , beta Catenina/genética
18.
Clin Genet ; 102(1): 66-71, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35352826

RESUMO

Mutations in LTBP3 are associated with Dental Anomalies and Short Stature syndrome (DASS; MIM 601216), which is characterized by hypoplastic type amelogenesis imperfecta, hypodontia, underdeveloped maxilla, short stature, brachyolmia, aneurysm and dissection of the thoracic aorta. Here we report a novel (p.Arg545ProfsTer22) and a recurrent (c.3107-2A > G) LTBP3 variants, in a Turkish family affected with DASS. The proband, who carried compound heterozygous variant c.3107-2A > G, p.Arg545ProfsTer22, was most severely affected with DASS. The proband's father, who carried the heterozygous variant c.3107-2A > G had short stature and prognathic mandible. The mother and brother of the proband carried the heterozygous variant p.Arg545ProfsTer22, but only the mother showed any DASS characteristics. The c.3107-2A > G and the p.Arg545ProfsTer22 variants are expected to result in abnormal LTPB3 protein, failure of TGFß-LAP-LTBP3 complex formation, and subsequent disruption of TGFß secretion and activation. This is the first report of heterozygous carriers of LTBP3 variants showing phenotypes. The new findings of DASS found in this family include taurodontism, single-rooted molars, abnormal dentin, calcified dental pulp blood vessels, prognathic mandible, failure of mandibular tooth eruption, interatrial septal aneurysm, secundum atrial septal defect, tricuspid valve prolapse, and a recurrent glenohumeral joint dislocation.


Assuntos
Amelogênese Imperfeita , Nanismo , Osteocondrodisplasias , Anormalidades Dentárias , Amelogênese Imperfeita/genética , Nanismo/genética , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Masculino , Osteocondrodisplasias/genética , Fenótipo , Anormalidades Dentárias/genética , Fator de Crescimento Transformador beta/genética
19.
Life (Basel) ; 12(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35330102

RESUMO

Cholangiocarcinoma (CCA) is an aggressive tumor of the biliary epithelium with poor survival that shows limited response to conventional chemotherapy. Increased expression of glucosylceramide synthase (GCS) contributes to drug resistance and the progression of various cancers; the expression profiles of GCS (UGCG) and the genes for glucocerebrosidases 1, 2, and 3 (GBA1, GBA2, and GBA3) were therefore studied in CCA. The biological functions of GCS for cell proliferation and cisplatin sensitivity in CCA were explored. GCS expression was higher in CCA tumor tissues than that of GBA1, GBA2, and GBA3. Verification of GCS expression in 29 paired frozen CCA tissues showed that 8 of 29 cases (27.6%) had high GCS expression. The expression of GCS and GBA2 was induced in CCA cell lines following low-dose cisplatin treatment. Suppression of GCS by either palmitoylamino-3-morpholino-1-propanol (PPMP), GCS knockdown or a combination of the two resulted in reduced cell proliferation. These treatments enhanced the effect of cisplatin-induced CCA cell death, increased the expression of apoptotic proteins and reduced phosphorylation of ERK upon cisplatin treatment. Taken together, inhibition of the GCS increased cisplatin-induced CCA apoptosis via the inhibition of the ERK signaling pathway. Thus, targeting GCS might be a strategy for CCA treatment.

20.
J Exp Bot ; 73(3): 784-800, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34570888

RESUMO

Glycoside hydrolase family1 ß-glucosidases play a variety of roles in plants, but their in planta functions are largely unknown in rice (Oryza sativa). In this study, the biological function of Os12BGlu38, a rice ß-glucosidase, expressed in bicellular to mature pollen, was examined. Genotype analysis of progeny of the self-fertilized heterozygous Os12BGlu38 T-DNA mutant, os12bglu38-1, found no homozygotes and a 1:1 ratio of wild type to heterozygotes. Reciprocal cross analysis demonstrated that Os12BGlu38 deficiency cannot be inherited through the male gamete. In cytological analysis, the mature mutant pollen appeared shrunken and empty. Histochemical staining and TEM showed that mutant pollen lacked intine cell wall, which was rescued by introduction of wild-type Os12BGlu38 genomic DNA. Metabolite profiling analysis revealed that cutin monomers and waxes, the components of the pollen exine layer, were increased in anthers carrying pollen of os12bglu38-1 compared with wild type and complemented lines. Os12BGlu38 fused with green fluorescent protein was localized to the plasma membrane in rice and tobacco. Recombinant Os12BGlu38 exhibited ß-glucosidase activity on the universal substrate p-nitrophenyl ß-d-glucoside and some oligosaccharides and glycosides. These findings provide evidence that function of a plasma membrane-associated ß-glucosidase is necessary for proper intine development.


Assuntos
Oryza , Parede Celular/metabolismo , Fertilidade , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo , beta-Glucosidase/genética , beta-Glucosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...