Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 17(25): e2101166, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34018675

RESUMO

Colloidal semiconductor nanocrystals are important building blocks for low-cost, solution-processed electronic devices with tunable functionalities. Considerable progress is made in improving charge transport through nanocrystal films by exchanging long insulating ligands with shorter passivating ligands. To take full advantage of this strategy, it is equally important to fabricate close-packed structures that reduce the average interparticle spacing. Yet it remains a challenge to retain long-range, close-packed order after ligand exchange. Here, a novel one-step in situ ligand-exchange method is demonstrated that enables rapid (5 min) ligand exchange of nanocrystal films, which are more than 50 layers thick. Using this simple and efficient method, it is shown that the face-centered cubic ordering of 500 nm thick PbSe nanocrystal films is retained after ligand exchange from oleic acid to benzoic acid. Moreover, it is demonstrated that PbSe nanocrystal photodetectors with a well-ordered structure have superior optoelectronic properties compared to disordered films; ordered films have a 16× higher responsivity of ≈0.25 A W-1 at 1 V and a 2× faster response time. As far as it is known, this is the first report to realize a rapid one-step ligand exchange through a thick superlattice film with retention of long-range order.

2.
ACS Appl Mater Interfaces ; 9(41): 36173-36180, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28956432

RESUMO

Self-doped colloidal quantum dots (CQDs) attract a strong interest for the design of a new generation of low-cost infrared (IR) optoelectronic devices because of their tunable intraband absorption feature in the mid-IR region. However, very little remains known about their electronic structure which combines confinement and an inverted band structure, complicating the design of optimized devices. We use a combination of IR spectroscopy and photoemission to determine the absolute energy levels of HgSe CQDs with various sizes and surface chemistries. We demonstrate that the filling of the CQD states ranges from 2 electrons per CQD at small sizes (<5 nm) to more than 18 electrons per CQD at large sizes (≈20 nm). HgSe CQDs are also an interesting platform to observe vanishing confinement in colloidal nanoparticles. We present lines of evidence for a semiconductor-to-metal transition at the CQD level, through temperature-dependent absorption and transport measurements. In contrast with bulk systems, the transition is the result of the vanishing confinement rather than the increase of the doping level.

3.
Nano Lett ; 17(7): 4067-4074, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28598629

RESUMO

We investigate the electronic and transport properties of HgTe 2D colloidal quantum wells. We demonstrate that the material can be made p- or n-type depending on the capping ligands. In addition to the control of majority carrier type, the surface chemistry also strongly affects the photoconductivity of the material. These transport measurements are correlated with the electronic structure determined by high resolution X-ray photoemission. We attribute the change of majority carriers to the strong hybridization of an n-doped HgS layer resulting from capping the HgTe nanoplatelets by S2- ions. We further investigate the gate and temperature dependence of the photoresponse and its dynamics. We show that the photocurrent rise and fall times can be tuned from 100 µs to 1 ms using the gate bias. Finally, we use time-resolved photoemission spectroscopy as a probe of the transport relaxation to determine if the observed dynamics are limited by a fundamental process such as trapping. These pump probe surface photovoltage measurements show an even faster relaxation in the 100-500 ns range, which suggests that the current performances are rather limited by geometrical factors.

4.
J Am Chem Soc ; 138(33): 10496-501, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27487074

RESUMO

Two-dimensional colloidal nanoplatelets (NPLs), owing to the atomic-level control of their confined direction (i.e., no inhomogeneous broadening), have demonstrated improved photoluminescence (PL) line widths for cadmium chalcogenide-based nanocrystals. Here we use cation exchange to synthesize mercury chalcogenide NPLs. Appropriate control of reaction kinetics enables the 2D morphology of the NPLs to be maintained during the cation exchange. HgTe and HgSe NPLs have significantly improved optical features compared to existing materials with similar band gaps. The PL line width of HgTe NPLs (40 nm full width at half-maximum, centered at 880 nm) is a factor of 2 smaller than typical PbS nanocrystals (NCs) emitting at the same wavelength. The PL has a lifetime of 50 ns, almost 2 orders of magnitude shorter than small PbS colloidal quantum dots (CQDs), and a quantum yield of ∼10%, almost 2 orders of magnitude shorter than small PbS colloidal quantum dots (CQDs). These materials are promising for a large variety of applications spanning from telecommunications to the design of colloidal topological insulators.

5.
Nano Lett ; 15(4): 2285-90, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25764295

RESUMO

We report the synthesis of high-quality single-crystal two-dimensional, layered nanostructures of silicon telluride, Si2Te3, in multiple morphologies controlled by substrate temperature and Te seeding. Morphologies include nanoribbons formed by VLS growth from Te droplets, vertical hexagonal nanoplates through vapor-solid crystallographically oriented growth on amorphous oxide substrates, and flat hexagonal nanoplates formed through large-area VLS growth in liquid Te pools. We show the potential for doping through the choice of substrate and growth conditions. Vertical nanoplates grown on sapphire substrates, for example, can incorporate a uniform density of Al atoms from the substrate. We also show that the material may be modified after synthesis, including both mechanical exfoliation (reducing the thickness to as few as five layers) and intercalation of metal ions including Li(+) and Mg(2+), which suggests applications in energy storage materials. The material exhibits an intense red color corresponding to its strong and broad interband absorption extending from the red into the infrared. Si2Te3 enjoys chemical and processing compatibility with other silicon-based material including amorphous SiO2 but is very chemically sensitive to its environment, which suggests applications in silicon-based devices ranging from fully integrated thermoelectrics to optoelectronics to chemical sensors.

6.
ACS Nano ; 8(8): 8676-82, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25117471

RESUMO

HgTe colloidal quantum dots are synthesized with high monodispersivity with sizes up to ∼15 nm corresponding to a room temperature absorption edge at ∼5 µm. The shape is tetrahedral for larger sizes and up to five peaks are seen in the absorption spectra with a clear size dependence. The size range of the HgTe quantum dots is extended to ∼20 nm using regrowth. The corresponding room temperature photoluminescence and absorption edge reach into the long-wave infrared, past 8 µm. Upon cooling to liquid nitrogen temperature, a photoconductive response is obtained in the long-wave infrared region up to 12 µm. Configuration-interaction tight-binding calculations successfully explain the spectra and the size dependence. The five optical features can be assigned to sets of single hole to single electron transitions whose strengths are strongly influenced by the multiband/multiorbital character of the quantum-dot electronic states.

7.
J Phys Chem Lett ; 5(7): 1139-43, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-26274461

RESUMO

HgS nanocrystals show a strong mid-infrared absorption and a bleach of the near-infrared band edge, both tunable in energy and reversibly controlled by exposure to solution ions under ambient conditions. The same effects are obtained by applying a reducing electrochemical potential, confirming that the mid-infrared absorption is the intraband transition of the quantum dot. This is the first time that stable carriers are present in the quantum state of strongly confined quantum dot in ambient conditions. The mechanism by which doping is achieved is attributed to the rigid shifts of the valence and conduction band with respect to the environment, similar to the sensitivity of the work function of surfaces to adsorbates.

8.
Adv Mater ; 25(1): 137-41, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23027629

RESUMO

HgTe colloidal quantum dots (CQD) in an inorganic As(2)S(3) matrix allow 100-fold higher mobility with optimized transport properties compared to HgTe-organic CQD film while remaining intrinsic. The material's electronic properties are measured by field effect transistors as a function of temperature and the responsivity and detectivity of the mid-IR photoconductors are discussed.

9.
Nanotechnology ; 23(17): 175705, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22481378

RESUMO

Room temperature photodetection with HgTe colloidal quantum films is reported between 2 and 5 µm for particles of sizes between ~5 and ~12 nm diameter, and photodetection extends to 7 µm at 80 K. The size-tuning of the absorption of HgTe colloidal quantum dots, their optical cross section and the infrared absorption depth of films are measured. The tuning with radius is empirically given by [see formula in text] where R is in nm. The optical cross section of the colloidal dots at 415 nm is approximately proportional to their volume and given by σ(Hg)(415) = 2.6 ± 0.4 10(-17) cm(2)/mercury atom. The size-dependent optical cross section at the band edge ~1.5 10(-15) cm(2) is consistent with the expected oscillator strength of the quantum dots. The absorption depth of HgTe colloidal dot films is short, about 1-2 µm, which is an advantage for thin film devices. These properties agree rather well with the expectation from the k · p model. HgTe colloidal quantum dot thin films show a strong tuning with temperature with a large positive thermal shift between 0.4 and 0.2 meV K(-1), decreasing with decreasing size within the size range studied and this is attributed primarily to electron-phonon effects.

10.
J Am Chem Soc ; 133(41): 16422-4, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21942339

RESUMO

HgTe colloidal quantum dots are prepared via a simple two-step injection method. Absorption and photodetection with sharp edges, as well as narrow photoluminescence, are tunable across the near and mid-IR between 1.3 and 5 µm.


Assuntos
Ligas/síntese química , Mercúrio/química , Pontos Quânticos , Telúrio/química , Ligas/química , Coloides/síntese química , Coloides/química , Raios Infravermelhos , Luminescência , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...