Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ChemSusChem ; 17(7): e202301044, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38030584

RESUMO

A crystalline supramolecular photocatalyst is prepared through metal-induced self-assembly of perylene diimide with imidazole groups at the imide position (PDI-Hm). Exploiting the metal-coordination ability of imidazole, a crystalline assembly of copper-coordinated PDI-Hm (CuPDI-Hm) in a nanorod shape is prepared which displays an outstanding photocatalytic oxygen evolution rate of 25,900 µmol g-1 h-1 without additional co-catalysts. The imidazole-copper coordination, along with π-π stacking of PDI frameworks, guides the arrangement of PDI-Hm molecules to form highly crystalline assemblies. The coordination of copper also modulates the size of the CuPDI-Hm supramolecular assembly by regulating the nucleation and growth processes. Furthermore, the imidazole-copper coordination constructs the electric field within the PDI-Hm assembly, hindering the recombination of photo-induced charges to enhance the photoelectric/photocatalytic activity when compared to Cu-free PDI-Hm assemblies. Small CuPDI-Hm assembly exhibits higher photocatalytic activity due to their larger surface area and reduced light scattering. Together, the Cu-imidazole coordination presents a facile way for fabricating size-controlled crystalline PDI assemblies with built-in electric field enhancing photoelectric and photocatalytic activities substantially.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37751467

RESUMO

The adoption of dynamic mechanomodulation to regulate cellular behavior is an alternative to the use of chemical drugs, allowing spatiotemporal control. However, cell-selective targeting of mechanical stimuli is challenging due to the lack of strategies with which to convert macroscopic mechanical movements to different cellular responses. Here, we designed a nanoscale vibrating surface that controls cell behavior via selective repetitive cell deformation based on a poroelastic cell model. The vibrating indentations induce repetitive water redistribution in the cells with water redistribution rates faster than the vibrating rate; however, in the opposite case, cells perceive the vibrations as a one-time stimulus. The selective regulation of cell-cell adhesion through adjusting the frequency of nanovibration was demonstrated by suppression of cadherin expression in smooth muscle cells (fast water redistribution rate) with no change in vascular endothelial cells (slow water redistribution rate). This technique may provide a new strategy for cell-type-specific mechanical stimulation.

4.
Nano Converg ; 10(1): 42, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695365

RESUMO

Nanozymes mimic the function of enzymes, which drive essential intracellular chemical reactions that govern biological processes. They efficiently generate or degrade specific biomolecules that can initiate or inhibit biological processes, regulating cellular behaviors. Two approaches for utilizing nanozymes in intracellular chemistry have been reported. Biomimetic catalysis replicates the identical reactions of natural enzymes, and bioorthogonal catalysis enables chemistries inaccessible in cells. Various nanozymes based on nanomaterials and catalytic metals are employed to attain intended specific catalysis in cells either to mimic the enzymatic mechanism and kinetics or expand inaccessible chemistries. Each nanozyme approach has its own intrinsic advantages and limitations, making them complementary for diverse and specific applications. This review summarizes the strategies for intracellular catalysis and applications of biomimetic and bioorthogonal nanozymes, including a discussion of their limitations and future research directions.

5.
J Am Chem Soc ; 144(12): 5503-5516, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35235326

RESUMO

Biological nanomachines, including proteins and nucleic acids whose function is activated by conformational changes, are involved in every biological process, in which their dynamic and responsive behaviors are controlled by supramolecular recognition. The development of artificial nanomachines that mimic the biological functions for potential application as therapeutics is emerging; however, it is still limited to the lower hierarchical level of the molecular components. In this work, we report a synthetic machinery nanostructure in which actuatable molecular components are integrated into a hierarchical nanomaterial in response to external stimuli to regulate biological functions. Two nanometers core-sized gold nanoparticles are covered with ligand layers as actuatable components, whose folding/unfolding motional response to the cellular environment enables the direct penetration of the nanoparticles across the cellular membrane to disrupt intracellular organelles. Furthermore, the pH-responsive conformational movements of the molecular components can induce the apoptosis of cancer cells. This strategy based on the mechanical motion of molecular components on a hierarchical nanocluster would be useful to design biomimetic nanotoxins.


Assuntos
Fenômenos Biológicos , Nanopartículas Metálicas , Nanoestruturas , Membrana Celular , Ouro , Nanoestruturas/toxicidade
6.
ACS Appl Mater Interfaces ; 13(13): 14866-14874, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759486

RESUMO

Multidrug resistance (MDR) of cancer cells reduces chemotherapeutic efficacy by preventing drug accumulation in the cells through a drug efflux pump and lysosomal sequestration/exocytosis. Herein, to overcome such anticancer resistance, lysosome-targeted self-assembly of perylene diimide (PDI) derivatives is presented as a powerful strategy for effective and selective anticancer therapy. Stimulated by the lysosomal low pH, the amphiphilic PDI derivatives functionalized with amino acids (PDI-AAs) construct fibrous self-assembled structures inside the lysosomes, causing cancer cell apoptosis by lysosomal rupture. In contrast, negligible apoptosis was observed from normal cells by PDI-AA. The agglomerated fibrous assemblies were not removed by lysosomal exocytosis, thereby displaying a 10.7-fold higher anticancer efficacy on MDR cancer cells compared to a doxorubicin chemotherapeutic agent. The MDR-circumventing capability, along with high selectivity toward cancer cells, supports PDI-AAs as potential candidates for the treatment of MDR cancer cells by lysosome-targeted self-assembly.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imidas/farmacologia , Lisossomos/efeitos dos fármacos , Perileno/análogos & derivados , Aminoácidos/química , Antineoplásicos/química , Linhagem Celular , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Imidas/química , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Perileno/química , Perileno/farmacologia
7.
Analyst ; 145(22): 7312-7319, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-32902520

RESUMO

Stimuli-responsive self-assembly of functional amphiphilic molecules by specific chemical stimulants is a promising strategy for sensor application. Herein, we demonstrate a fast optical detection of urea in human urine by exploiting bolaform perylene diimide functionalized with imidazoles (PDI-Hm), whose aggregation is induced by urea hydrolysis. The hydroxides produced from the enzymatic urea hydrolysis deprotonate the imidazoles to reduce electrostatic repulsion between PDI-Hm molecules in a HCl-methanol mixture, thereby leading to aggregation and consequent fluorescence quenching. The molecular interaction of PDI-Hm was further scrutinized to understand the aggregation behavior driven by the screening of electrical repulsion. As an optical sensing probe, PDI-Hm displays a prompt response (<1 min) to hydroxide and detection limit of 0.4 mM for urea. PDI-Hm incorporating urease offers considerable selectivity toward urea among various components in human urine. The urea sensing accuracy of this PDI-Hm fluorescence chemosensor is comparable to that of a clinical method, showing 93.4% consistency. Furthermore, the PDI-Hm was fabricated into a gel film allowed for the fast screening of excessive urea in urine.


Assuntos
Perileno , Humanos , Imidazóis , Espectrometria de Fluorescência , Ureia
8.
ChemSusChem ; 11(15): 2569-2578, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29873890

RESUMO

Catalysts that can promote oxygen evolution from water are necessary for green energy production. In this study, colloidal heterogeneous catalysts for oxygen evolution were prepared by coordination of Ir species to self-assemblies of histidyl bolaamphiphiles. When dissolved in water, the histidyl bolaamphiphiles self-assembled to form particulate structures with the exposure of densely packed histidine imidazoles on their surface. Subsequent coordination of the Ir species to the bolaamphiphile assembly gave rise to catalytic activity toward the oxygen evolution reaction. The oxygen evolution was examined by using the catalytic assemblies in the presence of a sacrificial oxidant, cerium ammonium nitrate. The Ir-coordinated assemblies showed a turnover frequency of 13 min-1 , which was comparable to those previously reported for molecular water oxidation catalysts. The catalytic activity increased with increasing histidine imidazole/Ir molar ratio, which suggested that multiple coordination of Ir to imidazoles facilitated the formation of active Ir intermediates. This study demonstrates the feasibility of constructing catalytically active interfaces from colloidal bolaamphiphile assemblies with biochemical ligands.

9.
Chem Asian J ; 13(18): 2641-2648, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-29920956

RESUMO

Copper-doped zeolite imidazole framework-8 (Cu/ZIF-8) was prepared and its peroxidase-like oxidative catalytic activity was examined with a demonstration of its applicability for cancer-cell imaging. Through simple solution chemistry at room temperature, Cu/ZIF-8 nanocrystals were produced that catalytically oxidized an organic substrate of o-phenylenediamine in the presence of H2 O2 . In a similar manner to peroxidase, the Cu/ZIF-8 nanocrystals oxidized the substrate through a ping-pong mechanism with an activation energy of 59.2 kJ mol-1 . The doped Cu atoms functioned as active sites in which the active Cu intermediates were expected to be generated during the catalysis, whereas the undoped ZIF-8 did not show any oxidative activity. Cu/ZIF-8 nanocrystals exhibited low cell toxicity and displayed catalytic activity through interaction with H2 O2 among various reactive oxygen species in a cancer cell. This oxidative activity in vitro allowed cancer-cell imaging by exploiting the photoluminescence emitted from the oxidized product of o-phenylenediamine, which was insignificant in the absence of the Cu/ZIF-8 nanocrystals. The results of this study suggest that the Cu/ZIF-8 nanocrystal is a promising catalyst for the analysis of the microbiological systems.


Assuntos
Cobre/química , Imidazóis/química , Nanopartículas/química , Neoplasias/diagnóstico , Zeolitas/química , Materiais Biomiméticos/química , Materiais Biomiméticos/toxicidade , Catálise , Cobre/toxicidade , Células HEK293 , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Imidazóis/toxicidade , Cinética , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Nanopartículas/toxicidade , Oxirredução , Tamanho da Partícula , Peroxidase/química , Fenilenodiaminas/química , Porosidade , Zeolitas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...