Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Magn Reson Imaging ; 105: 10-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863374

RESUMO

Diffusion-weighted double-echo steady-state (dwDESS) MRI with bipolar diffusion gradients is a promising candidate to obtain diffusion weighted images (DWI) free of geometric distortions and with low motion sensitivity. However, a wider clinical application of dwDESS is currently hindered as no method is reported to explicitly calculate the effective b-value of the obtained DWI from the diffusion-gradients applied in the sequence. To this end, a previously described signal model was adapted for dwDESS with bipolar diffusion gradients, which allows to estimate an effective b-value, dubbed b'. Evaluation in phantom examinations was performed on a clinical 1.5 T MR system. Experimental results were compared with theoretical predictions, including the apparent diffusion coefficient (ADC) based on b-values from a standard EPI-DWI sequence and ADC' based on the effective b' from the dwDESS sequence. The adapted signal model was able to describe the experimental results, and the obtained values of ADC' were in line with conventional ADC measurements.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Movimento (Física) , Imagens de Fantasmas , Imagem Ecoplanar
2.
NMR Biomed ; 36(6): e4906, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36640112

RESUMO

Chemical exchange saturation transfer (CEST) MRI has gained recognition as a valuable addition to the molecular imaging and quantitative biomarker arsenal, especially for characterization of brain tumors. There is also increasing interest in the use of CEST-MRI for applications beyond the brain. However, its translation to body oncology applications lags behind those in neuro-oncology. The slower migration of CEST-MRI to non-neurologic applications reflects the technical challenges inherent to imaging of the torso. In this review, we discuss the application of CEST-MRI to oncologic conditions of the breast and torso (i.e., body imaging), emphasizing the challenges and potential solutions to address them. While data are still limited, reported studies suggest that CEST signal is associated with important histology markers such as tumor grade, receptor status, and proliferation index, some of which are often associated with prognosis and response to therapy. However, further technical development is still needed to make CEST a reliable clinical application for body imaging and establish its role as a predictive and prognostic biomarker.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Prognóstico , Imagem Molecular
3.
J Neuroimaging ; 32(5): 920-929, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35731178

RESUMO

BACKGROUND AND PURPOSE: Differentiation between hemangioblastoma and brain metastasis remains a challenge in neuroradiology using conventional MRI. Amide proton transfer (APT) imaging can provide unique molecular information. This study aimed to evaluate the usefulness of APT imaging in differentiating hemangioblastomas from brain metastases and compare APT imaging with diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging. METHODS: This retrospective study included 11 patients with hemangioblastoma and 20 patients with brain metastases. Region-of-interest analyses were employed to obtain the mean, minimum, and maximum values of APT signal intensity, apparent diffusion coefficient (ADC), and relative cerebral blood volume (rCBV), and these indices were compared between hemangioblastomas and brain metastases using the unpaired t-test and Mann-Whitney U test. Their diagnostic performances were evaluated using receiver operating characteristic (ROC) analysis and area under the ROC curve (AUC). AUCs were compared using DeLong's method. RESULTS: All MRI-derived indices were significantly higher in hemangioblastoma than in brain metastasis. ROC analysis revealed the best performance with APT-related indices (AUC = 1.000), although pairwise comparisons showed no significant difference between the mean ADC and mean rCBV. CONCLUSIONS: APT imaging is a useful and robust imaging tool for differentiating hemangioblastoma from metastasis.


Assuntos
Neoplasias Encefálicas , Hemangioblastoma , Amidas , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Hemangioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Prótons , Estudos Retrospectivos
4.
Front Cardiovasc Med ; 9: 884221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571164

RESUMO

Introduction: To develop and test the feasibility of free-breathing (FB), high-resolution quantitative first-pass perfusion cardiac MR (FPP-CMR) using dual-echo Dixon (FOSTERS; Fat-water separation for mOtion-corrected Spatio-TEmporally accelerated myocardial peRfuSion). Materials and Methods: FOSTERS was performed in FB using a dual-saturation single-bolus acquisition with dual-echo Dixon and a dynamically variable Cartesian k-t undersampling (8-fold) approach, with low-rank and sparsity constrained reconstruction, to achieve high-resolution FPP-CMR images. FOSTERS also included automatic in-plane motion estimation and T 2 * correction to obtain quantitative myocardial blood flow (MBF) maps. High-resolution (1.6 x 1.6 mm2) FB FOSTERS was evaluated in eleven patients, during rest, against standard-resolution (2.6 x 2.6 mm2) 2-fold SENSE-accelerated breath-hold (BH) FPP-CMR. In addition, MBF was computed for FOSTERS and spatial wavelet-based compressed sensing (CS) reconstruction. Two cardiologists scored the image quality (IQ) of FOSTERS, CS, and standard BH FPP-CMR images using a 4-point scale (1-4, non-diagnostic - fully diagnostic). Results: FOSTERS produced high-quality images without dark-rim and with reduced motion-related artifacts, using an 8x accelerated FB acquisition. FOSTERS and standard BH FPP-CMR exhibited excellent IQ with an average score of 3.5 ± 0.6 and 3.4 ± 0.6 (no statistical difference, p > 0.05), respectively. CS images exhibited severe artifacts and high levels of noise, resulting in an average IQ score of 2.9 ± 0.5. MBF values obtained with FOSTERS presented a lower variance than those obtained with CS. Discussion: FOSTERS enabled high-resolution FB FPP-CMR with MBF quantification. Combining motion correction with a low-rank and sparsity-constrained reconstruction results in excellent image quality.

5.
Magn Reson Med ; 82(5): 1812-1821, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31209938

RESUMO

PURPOSE: To develop prospectively accelerated 3D CEST imaging using compressed sensing (CS), combined with a saturation scheme based on time-interleaved parallel transmission. METHODS: A variable density pseudo-random sampling pattern with a centric elliptical k-space ordering was used for CS acceleration in 3D. Retrospective CS studies were performed with CEST phantoms to test the reconstruction scheme. Prospectively CS-accelerated 3D-CEST images were acquired in 10 healthy volunteers and 6 brain tumor patients with an acceleration factor (RCS ) of 4 and compared with conventional SENSE reconstructed images. Amide proton transfer weighted (APTw) signals under varied RF saturation powers were compared with varied acceleration factors. RESULTS: The APTw signals obtained from the CS with acceleration factor of 4 were well-preserved as compared with the reference image (SENSE R = 2) both in retrospective phantom and prospective healthy volunteer studies. In the patient study, the APTw signals were significantly higher in the tumor region (gadolinium [Gd]-enhancing tumor core) than in the normal tissue (p < .001). There was no significant APTw difference between the CS-accelerated images and the reference image. The scan time of CS-accelerated 3D APTw imaging was dramatically reduced to 2:10 minutes (in-plane spatial resolution of 1.8 × 1.8 mm2 ; 15 slices with 4-mm slice thickness) as compared with SENSE (4:07 minutes). CONCLUSION: Compressed sensing acceleration was successfully extended to 3D-CEST imaging without compromising CEST image quality and quantification. The CS-based CEST imaging can easily be integrated into clinical protocols and would be beneficial for a wide range of applications.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Meios de Contraste , Compressão de Dados , Feminino , Voluntários Saudáveis , Humanos , Masculino , Imagens de Fantasmas , Estudos Prospectivos , Estudos Retrospectivos
6.
J Gastroenterol Hepatol ; 34(1): 140-146, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29900583

RESUMO

BACKGROUND AND AIM: The amount of proteins and peptides can be estimated with amide proton transfer (APT) imaging. Previous studies demonstrated the usefulness of APT imaging to predict tumor malignancy. We determined whether APT imaging can predict the tumor response to neoadjuvant chemotherapy (NAC) in patients with locally advanced rectal cancer (LARC). METHODS: Seventeen patients with LARC who underwent a pretherapeutic magnetic resonance examination including APT imaging and NAC (at least two courses) were enrolled. The APT-weighted imaging (WI) signal intensity (SI) (%) was defined as magnetization transfer ratio asymmetry (MTRasym ) at the offset of 3.5 ppm. Each tumor was histologically evaluated for the degree of degeneration and necrosis and then classified as one of five histological Grades (0, none; 1a, less than 1/3; 1b, 1/3 to 2/3; 2, more than 2/3; 3, all). We compared the mean APTWI SIs of the tumors between the Grade 0/1a/1b (low-response group) and Grade 2/3 (high-response group) by Student's t-test. We used receiver operating characteristics curves to determine the diagnostic performance of the APTWI SI for predicting the tumor response. RESULTS: The mean APTWI SI of the low-response group (n = 12; 3.05 ± 1.61%) was significantly higher than that of the high-response group (n = 5; 1.14 ± 1.13%) (P = 0.029). The area under the curve for predicting the tumor response using the APTWI SI was 0.87. When ≥2.75% was used as an indicator of low-response status, 75% sensitivity and 100% specificity of the APTWI SI were obtained. CONCLUSION: Pretherapeutic APT imaging can predict the tumor response to NAC in patients with LARC.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/tratamento farmacológico , Adenocarcinoma/patologia , Adulto , Idoso , Amidas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Área Sob a Curva , Quimioterapia Adjuvante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Valor Preditivo dos Testes , Prótons , Curva ROC , Neoplasias Retais/patologia
7.
Eur Radiol ; 29(8): 4133-4140, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30488111

RESUMO

OBJECTIVES: Differentiation of glioblastomas (GBMs) and solitary brain metastases (SBMs) is an important clinical problem. The aim of this study was to determine whether amide proton transfer-weighted (APTW) imaging is useful for distinguishing GBMs from SBMs. METHODS: We examined 31 patients with GBM and 17 with SBM. For each tumor, enhancing areas (EAs) and surrounding non-enhancing areas with T2-prolongation (peritumoral high signal intensity areas, PHAs) were manually segmented using fusion images of the post-contrast T1-weighted and T2-weighted images. The mean amide proton transfer signal intensities (APTSIs) were compared among the EAs, PHAs, and contralateral normal appearing white matter (NAWM) within each tumor type. Furthermore, we analyzed APTSI histograms to compare the EAs and PHAs of GBMs and SBMs. RESULTS: In GBMs, the mean APTSI in EAs (2.92 ± 0.74%) was the highest, followed by that in PHAs (1.64 ± 0.83%, p < 0.001) and NAWM (0.43 ± 0.83%, p < 0.001). In SBMs, the mean APTSI in EAs (1.85 ± 0.99%) and PHAs (1.42 ± 0.45%) were significantly higher than that in NAWM (0.42 ± 0.30%, p < 0.001), whereas no significant difference was found between EAs and PHAs. The mean and 10th, 25th, 50th, 75th, and 90th percentiles for APT in EAs of GBMs were significantly higher than those of SBMs. However, no significant difference was found between GBMs and SBMs in any histogram parameters for PHA. CONCLUSIONS: APTSI in EAs, but not PHAs, is useful for differentiation between GBMs and SBMs. KEY POINTS: • Amide proton transfer-weighted imaging and histogram analysis in the enhancing tumor can provide useful information for differentiation between glioblastomas and solitary brain metastasis. • Amide proton transfer signal intensity histogram parameters from peritumoral areas showed no significant difference between glioblastomas and solitary brain metastasis. • Vasogenic edema alone can substantially increase amide proton transfer signal intensity which may mimic tumor invasion.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Glioblastoma/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Amidas , Encéfalo/diagnóstico por imagem , Criança , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prótons , Adulto Jovem
8.
Magn Reson Med ; 81(1): 504-513, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30146714

RESUMO

PURPOSE: Chemical exchange saturation transfer is a novel and promising MRI contrast method, but it can be time-consuming. Common parallel imaging methods, like SENSE, can lead to reduced quality of CEST. Here, parallel blind compressed sensing (PBCS), combining blind compressed sensing (BCS) and parallel imaging, is evaluated for the acceleration of CEST in brain and breast. METHODS: The CEST data were collected in phantoms, brain (N = 3), and breast (N = 2). Retrospective Cartesian undersampling was implemented and the reconstruction results of PBCS-CEST were compared with BCS-CEST and k-t sparse-SENSE CEST. The normalized RMSE and the high-frequency error norm were used for quantitative comparison. RESULTS: In phantom and in vivo brain experiments, the acceleration factor of R = 10 (24 k-space lines) was achieved and in breast R = 5 (30 k-space lines), without compromising the quality of the PBCS-reconstructed magnetization transfer rate asymmetry maps and Z-spectra. Parallel BCS provides better reconstruction quality when compared with BCS, k-t sparse-SENSE, and SENSE methods using the same number of samples. Parallel BCS overperforms BCS, indicating that the inclusion of coil sensitivity improves the reconstruction of the CEST data. CONCLUSION: The PBCS method accelerates CEST without compromising its quality. Compressed sensing in combination with parallel imaging can provide a valuable alternative to parallel imaging alone for accelerating CEST experiments.


Assuntos
Encéfalo/diagnóstico por imagem , Mama/diagnóstico por imagem , Compressão de Dados/métodos , Imageamento por Ressonância Magnética , Algoritmos , Meios de Contraste/química , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador , Masculino , Distribuição Normal , Imagens de Fantasmas , Reprodutibilidade dos Testes
9.
Magn Reson Imaging ; 51: 96-103, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729438

RESUMO

PURPOSE: To prospectively investigate the ability of amide proton transfer (APT) imaging, in comparison with that of diffusion-weighted imaging (DWI), to predict pathological factors in rectal cancer. MATERIALS AND METHODS: Twenty-two patients who underwent MR examination including APT imaging and DWI for evaluation of rectal cancer were enrolled. APT signal intensity (SI) was defined as the magnetization transfer asymmetry at 3.5 ppm and was mapped. An apparent diffusion coefficient (ADC) map was generated using b-values of 0, 500 and 1000 s/mm2. APT SI and ADC were calculated by placing regions-of-interest in the tumors on these maps. Pathological factors including tumor size and tumor grade were also evaluated. Average APT SIs or ADCs were compared between the two groups classified based on each pathological factor using Student's t-test. RESULTS: The average APT SI of tumors with diameters of 5 cm or more (3.09 ±â€¯1.41%) was significantly higher than that of tumors with diameters < 5 cm (1.83 ±â€¯1.38%). In addition, the average APT SI of moderately differentiated adenocarcinoma (2.82 ±â€¯1.51%) was significantly higher than that of well-differentiated adenocarcinoma (1.24 ±â€¯0.57%). There was no difference in ADC between groups classified based on any pathological factor. CONCLUSION: Amide proton transfer imaging can predict tumor grade in rectal cancer.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/patologia , Idoso , Amidas , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Prospectivos , Prótons , Reto/diagnóstico por imagem , Reto/patologia
10.
Eur Radiol ; 28(8): 3285-3295, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29488086

RESUMO

OBJECTIVES: To compare the diagnostic performance of amide proton transfer (APT) imaging and 11-C methionine positron emission tomography (MET-PET) for in vivo molecular imaging of protein metabolism in post-treatment gliomas. MATERIALS AND METHODS: This study included 43 patients (12 low and 31 high grade) with post-treatment gliomas who underwent both APT and MET-PET imaging within 3 weeks. APT-weighted voxel values and semi-quantitative tumour-to-normal ratios (TNR) were obtained from tumour portions. The voxel-wise relationships between TNR and APT were assessed. The diagnostic performance for recurrence of high-grade gliomas was calculated, using the area under the receiver operating characteristic curve (AUC) with maximum (TNRmax and APTmax) and 90% histogram values (TNR90 and APT90). RESULTS: A moderate positive correlation between TNR and APT was found in low-grade recurrences (r = 0.47, p < 0.001), but not in high-grade ones (r = -0.24, p < 0.001). For distinguishing recurrence in post-treatment high-grade gliomas, APTmax (AUC, 0.88) and APT90 (AUC, 0.78-0.83) had a similar to better diagnostic performance than TNRmax (AUC, 0.71, p = 0.08) or TNR90 (AUC, 0.53-0.59, p = 0.01-0.05). CONCLUSIONS: In post-treatment high-grade gliomas, APT provides different regional information to MET-PET and provides higher diagnostic performance. This difference needs to be considered when using APT or MET-PET as a surrogate marker for tumour protein metabolism. KEY POINTS: • APT and TNR values in low-grade recurrence showed a moderate voxel-wise correlation. • APT and TNR demonstrated regional differences in post-treatment high-grade gliomas. • APT90 showed better diagnostic performance than TNR90 in high-grade recurrence.


Assuntos
Amidas/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioma/patologia , Recidiva Local de Neoplasia/patologia , Prótons , Adulto , Idoso , Feminino , Humanos , Masculino , Metionina , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Curva ROC
12.
Magn Reson Med ; 79(5): 2731-2737, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28862349

RESUMO

PURPOSE: Chemical exchange saturation transfer (CEST) MRI is increasingly evolving from brain to body applications. One of the known problems in the body imaging is the presence of strong lipid signals. Although their influence on the CEST effect is acknowledged, there was no study that focuses on the interplay among echo time, fat fraction, and Z-spectrum. This study strives to address these points, with the emphasis on the application in the breast. METHODS: Z-spectra were simulated in phase and out of phase of the main fat peak at -3.4 ppm, with the fat fraction varying from 0 to 100%. The magnetization transfer ratio asymmetry in two ranges, centering at the exchanging pool and at 3.5 ppm approximately opposite the nonexchanging fat pool, were calculated and were plotted against fat fraction. The results were verified in phantoms and in vivo. RESULTS: The results demonstrate the combined influence of fat fraction and echo time on the Z-spectrum for gradient echo based CEST acquisitions. The influence is straightforward in the in-phase images, but it is more complicated in the out-of-phase images, potentially leading to erroneous CEST contrast. CONCLUSIONS: This study provides a basis for understanding the origin and appearance of lipid artifacts in CEST imaging, and lays the foundation for their efficient removal. Magn Reson Med 79:2731-2737, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Feminino , Humanos , Lipídeos/química , Imagens de Fantasmas
13.
Radiology ; 286(3): 909-917, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29083987

RESUMO

Purpose To evaluate the utility of amide proton transfer (APT) imaging in estimating histologic grades of endometrioid endometrial adenocarcinoma (EEA). Materials and Methods The institutional review board approved this prospective study. Between June 2012 and March 2016, 32 patients with EEA underwent magnetic resonance (MR) imaging. After their surgical procedures, their EEAs were confirmed pathologically and classified into histologic grades: grade 1 (n = 11), grade 2 (n = 11), and grade 3 (n = 10). The APT signal intensities (SIs) and the mean and minimum apparent diffusion coefficients (ADCs) of the three grades were calculated and compared. Spearman rank correlation coefficient was also calculated between the APT SIs and histologic grades, and between the ADCs and histologic grades. Results The Spearman correlation coefficient with histologic grade of the APT SIs, the mean ADC, and the minimum ADC were 0.55 (P = .001), 0.03 (P = .84), and -0.30 (P = .09), respectively. The average APT SIs and the mean and minimum ADCs were 2.2% ± 0.2 (standard deviation), 0.9 × 10-3 mm2/sec ± 0.2, and 0.6 × 10-3 mm2/sec ± 0.1 for grade 1; 3.2% ± 0.3, 0.8 × 10-3 mm2/sec ± 0.1, and 0.5 × 10-3 mm2/sec ± 0.1 for grade 2; and 3.7% ± 0.3, 0.9 × 10-3 mm2/sec ± 0.1, and 0.5 × 10-3 mm2/sec ± 0.1 for grade 3, respectively. The APT SIs of grade 3 EEA were significantly higher than those of grade 1 EEA (P = .01), but other pairwise comparisons did not reveal any significant differences (P = .06-.51). The mean and minimum ADCs showed no significant differences among the three histologic grades (P =.13-.51). Conclusion The APT SI was positively correlated with the histologic grades of EEA. © RSNA, 2017 Online supplemental material is available for this article.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Neoplasias do Endométrio/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias do Endométrio/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Variações Dependentes do Observador , Estudos Prospectivos , Prótons , Curva ROC
14.
Invest Radiol ; 52(10): 620-630, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28598900

RESUMO

OBJECTIVES: Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a method to heat lesions noninvasively to a stable, elevated temperature and a well-suited method to induce local hyperthermia (41°C-43°C) in deep-seated tissues. Magnetic Resonance (MR) imaging provides therapy planning on anatomical images and offers temperature feedback based on near-real-time MR thermometry. Although constant acquisition of MR thermometry data is crucial to ensure prolonged hyperthermia, it limits the freedom to perform measurements of other MR parameters, which are of interest during hyperthermia treatments. In image-guided drug delivery applications, co-encapsulation of paramagnetic MR contrast agents with a drug inside temperature-sensitive liposomes (TSLs) allows to visualize hyperthermia-triggered drug delivery through changes of the longitudinal relaxation rate R1. While the drug accumulates in the heated tumor tissue, R1 changes can be used for an estimate of the tumor drug concentration. The main objective of this study was to demonstrate that interleaved MR sequences are able to monitor temperature with an adequate temporal resolution and could give a reasonable estimate of the achieved tumor drug concentration through R1 changes. To this aim, in vitro validation tests and an in vivo proof-of-concept study were performed. MATERIALS AND METHODS: All experiments were performed on a clinical 3-T MR-HIFU system adapted with a preclinical setup. The validity of the R1 values and the temperature maps stability were evaluated in phantom experiments and in ex vivo porcine muscle tissue. In vivo experiments were performed on rats bearing a 9L glioma tumor on their hind limb. All animals (n = 4 HIFU-treated, n = 4 no HIFU) were injected intravenously with TSLs co-encapsulating doxorubicin and gadoteridol as contrast agent. The TSL injection was followed by either 2 times 15 minutes of MR-HIFU-induced hyperthermia or a sham treatment. R1 maps were acquired before, during, and after sonication, using a single slice Inversion Recovery Look-Locker (IR-LL) sequence (field of view [FOV], 50 × 69 mm; in-plane resolution, 0.52 × 0.71 mm; slice thickness, 3 mm; 23 phases of 130 milliseconds; 1 full R1 map every 2 minutes). The R1 maps acquired during treatment were interleaved with 2 perpendicular proton resonance frequency shift (PRFS) MR thermometry slices (dynamic repetition time, 8.6 seconds; FOV, 250 × 250 mm; 1.4 × 1.4 mm in-plane resolution; 4 mm slice thickness). Tumor doxorubicin concentrations were determined fluorometrically. RESULTS: In vitro results showed a slight but consistent overestimation of the measured R1 values compared with calibrated R1 values, regardless whether the R1 was acquired with noninterleaved IR-LL or interleaved. The average treatment cell temperature had a slightly higher temporal standard deviation for the interleaved PRFS sequence compared with the noninterleaved PRFS sequence (0.186°C vs 0.101°C, respectively). The prolonged time in between temperature maps due to the interleaved IR-LL sequence did not degrade the temperature stability during MR-HIFU treatment (Taverage = 40.9°C ± 0.3°C). Upon heat treatment, some tumors showed an R1 increase in a large part of the tumor while other tumors hardly showed any ΔR1. The tumor doxorubicin concentration showed a linear correlation with the average ΔR1 during both sonications (n = 8, Radj = 0.933), which was higher than for the ΔR1 measured after tumor cooldown (averaged for both sonications, n = 8, Radj = 0.877). CONCLUSIONS: The new approach of interleaving different MR sequences was applied to simultaneously acquire R1 maps and PRFS thermometry scans during a feedback-controlled MR-HIFU-induced hyperthermia treatment. Interleaved acquisition did not compromise speed or accuracy of each scan. The ΔR1 acquired during treatment was used to visualize and quantify hyperthermia-triggered release of gadoteridol from TSLs and better reflected the intratumoral doxorubicin concentrations than the ΔR1 measured after cooldown of the tumor, exemplifying the benefit of interleaving R1 maps with temperature maps during drug delivery. Our study serves as an example for interleaved MR acquisition schemes, which introduce a higher flexibility in speed, sequence optimization, and timing.


Assuntos
Glioma/diagnóstico por imagem , Glioma/cirurgia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Hipertermia Induzida/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Animais , Meios de Contraste/administração & dosagem , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Gadolínio , Compostos Heterocíclicos , Aumento da Imagem/métodos , Lipossomos , Compostos Organometálicos , Ratos , Suínos , Temperatura
15.
Theranostics ; 7(2): 377-389, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042341

RESUMO

Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvß3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvß3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous 19F/1H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvß3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvß3-No-Drug micelles while αvß3-Dxtl-PD or αvß3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvß3+ macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvß3-Dxtl-PD micelles. Additionally, αvß3-Dxtl-PD decreased BAL eosinophil and αvß3+ CD45+ leukocytes relative to αvß3-No-Drug micelles, whereas αvß3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a clinically relevant rodent model.


Assuntos
Remodelação das Vias Aéreas , Inibidores da Angiogênese/administração & dosagem , Asma/tratamento farmacológico , Asma/patologia , Nanoestruturas/administração & dosagem , Animais , Asma/diagnóstico por imagem , Cicloexanos/administração & dosagem , Modelos Animais de Doenças , Docetaxel , Portadores de Fármacos/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Imageamento por Ressonância Magnética , Microscopia de Fluorescência , Pró-Fármacos/administração & dosagem , Pyroglyphidae/patogenicidade , Ratos , Sesquiterpenos/administração & dosagem , Taxoides/administração & dosagem , Resultado do Tratamento
16.
Eur Radiol ; 27(2): 578-588, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27003139

RESUMO

OBJECTIVES: To investigate whether amide proton transfer (APT) MR imaging can differentiate high-grade gliomas (HGGs) from low-grade gliomas (LGGs) among gliomas without intense contrast enhancement (CE). METHODS: This retrospective study evaluated 34 patients (22 males, 12 females; age 36.0 ± 11.3 years) including 20 with LGGs and 14 with HGGs, all scanned on a 3T MR scanner. Only tumours without intense CE were included. Two neuroradiologists independently performed histogram analyses to measure the 90th-percentile (APT90) and mean (APTmean) of the tumours' APT signals. The apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) were also measured. The parameters were compared between the groups with Student's t-test. Diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis. RESULTS: The APT90 (2.80 ± 0.59 % in LGGs, 3.72 ± 0.89 in HGGs, P = 0.001) and APTmean (1.87 ± 0.49 % in LGGs, 2.70 ± 0.58 in HGGs, P = 0.0001) were significantly larger in the HGGs compared to the LGGs. The ADC and rCBV values were not significantly different between the groups. Both the APT90 and APTmean showed medium diagnostic performance in this discrimination. CONCLUSIONS: APT imaging is useful in discriminating HGGs from LGGs among diffuse gliomas without intense CE. KEY POINTS: • Amide proton transfer (APT) imaging helps in grading non-enhancing gliomas • High-grade gliomas showed higher APT signal than low-grade gliomas • APT imaging showed better diagnostic performance than diffusion- and perfusion-weighted imaging.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Amidas , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Diagnóstico Diferencial , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Imagem de Perfusão , Prótons , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
17.
Magn Reson Med ; 77(6): 2272-2279, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27385636

RESUMO

PURPOSE: To assess the quantitative performance of three-dimensional (3D) fast spin-echo (FSE) Dixon amide proton transfer (APT) imaging of brain tumors compared with B0 correction with separate mapping methods. METHODS: Twenty-two patients with brain tumors (54.2 ± 18.7 years old, 12 males and 10 females) were scanned at 3 Tesla (T). Z-spectra were obtained at seven different frequency offsets at ±3.1 ppm, ± 3.5 ppm, ± 3.9 ppm, and -1560 ppm. The scan was repeated three times at +3.5 ppm with echo shifts for Dixon B0 mapping. The APT image corrected by a three-point Dixon-type B0 map from the same scan (3D-Dixon) or a separate B0 map (2D-separate and 3D-separate), and an uncorrected APT image (3D-uncorrected) were generated. We compared the APT-weighted signals within a tumor obtained with each 3D method with those obtained with 2D-separate as a reference standard. RESULTS: Excellent agreements and correlations with the 2D-separate were obtained by the 3D-Dixon method for both mean (ICC = 0.964, r = 0.93, P < 0.0001) and 90th-percentile (ICC = 0.972, r = 0.95, P < 0.0001) APT-weighted signals. These agreements and correlations for 3D-Dixon were better than those obtained by the 3D-uncorrected and 3D-separate methods. CONCLUSION: The 3D FSE Dixon APT method with intrinsic B0 correction offers a quantitative performance that is similar to that of established two-dimensional (2D) methods. Magn Reson Med 77:2272-2279, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Amidas/metabolismo , Artefatos , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Imagem Molecular/métodos , Prótons , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Marcadores de Spin , Distribuição Tecidual
18.
J Magn Reson ; 275: 55-67, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28012297

RESUMO

Chemical exchange saturation transfer (CEST) is a novel contrast mechanism and it is gaining increasing popularity as many promising applications have been proposed and investigated. Fast and quantitative CEST imaging techniques are further needed in order to increase the applicability of CEST for clinical use as well as to derive quantitative physiological and biological information. Steady-state methods for fast CEST imaging have been reported recently. Here, we observe that an extreme case of these methods is a balanced steady-state free precession (bSSFP) sequence. The bSSFP in itself is sensitive to the exchange processes; hence, no additional saturation or preparation is needed for CEST-like data acquisition. The bSSFP experiment can be regarded as observation during saturation, without separate saturation and acquisition modules as used in standard CEST and similar experiments. One of the differences from standard CEST methods is that the bSSFP spectrum is an XY-spectrum not a Z-spectrum. As the first proof-of-principle step, we have implemented the steady-state bSSFP sequence for chemical exchange detection (bSSFPX) and verified its feasibility in phantom studies. These studies have shown that bSSFPX can achieve exchange-mediated contrast comparable to the standard CEST experiment. Therefore, the bSSFPX method has a potential for fast and quantitative CEST data acquisition.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Simulação por Computador , Imagens de Fantasmas , Razão Sinal-Ruído
19.
J Magn Reson Imaging ; 45(1): 125-131, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27383502

RESUMO

PURPOSE: To retrospectively determine the optimal b-value(s) of diffusion-weighted imaging (DWI) associated with intermediate-high risk cancer in the peripheral zone (PZ) of the prostate. MATERIALS AND METHODS: Forty-two consecutive patients underwent multi b-value (16 evenly spaced b-values between 0 and 2000 s/mm2 ) DWI along with multi-parametric MRI (MP-MRI) of the prostate at 3 Tesla followed by trans-rectal ultrasound/MRI fusion guided targeted biopsy of suspicious lesions detected at MP-MRI. Computed DWI images up to a simulated b-value of 4000 s/mm2 were also obtained using a pair of b-values (b = 133 and 400 or 667 or 933 s/mm2 ) from the multi b-value DWI. The contrast ratio of average intensity of the targeted lesions and the background PZ was determined. Receiver operator characteristic curves and the area under the curve (AUCs) were obtained for separating patients eligible for active surveillance with low risk prostate cancers from intermediate-high risk prostate cancers as per the cancer of the prostate risk assessment (CAPRA) scoring system. RESULTS: The AUC first increased then decreased with the increase in b-values reaching maximum at b = 1600 s/mm2 (0.74) with no statistically significant different AUC of DWI with b-values 1067-2000 s/mm2 . The AUC of computed DWI increased then decreased with the increase in b-values reaching a maximum of 0.75 around b = 2000 s/mm2 . There was no statistically significant difference between the AUC of optimal acquired DWI and either of optimal computed DWI. CONCLUSION: The optimal b-value for acquired DWI in differentiating intermediate-high from low risk prostate cancers in the PZ is b = 1600 s/mm2 . The computed DWI has similar performance as that of acquired DWI with the optimal performance around b = 2000 s/mm2 . LEVEL OF EVIDENCE: 4 J. Magn. Reson. Imaging 2017;45:125-131.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Adulto , Idoso , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade
20.
PLoS One ; 11(5): e0155925, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227746

RESUMO

In this study, we evaluated the dependence of saturation pulse length on APT imaging of diffuse gliomas using a parallel transmission-based technique. Twenty-two patients with diffuse gliomas (9 low-grade gliomas, LGGs, and 13 high-grade gliomas, HGGs) were included in the study. APT imaging was conducted at 3T with a 2-channel parallel transmission scheme using three different saturation pulse lengths (0.5 s, 1.0 s, 2.0 s). The 2D fast spin-echo sequence was used for imaging. Z-spectrum was obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. Magnetization transfer ratio (MTRasym) and ΔMTRasym (contrast between tumor and normal white matter) at 3.5 ppm were compared among different saturation lengths. A significant increase in MTRasym (3.5 ppm) of HGG was found when the length of saturation pulse became longer (3.09 ± 0.54% at 0.5 s, 3.83 ± 0.67% at 1 s, 4.12 ± 0.97% at 2 s), but MTRasym (3.5 ppm) was not different among the saturation lengths in LGG. ΔMTRasym (3.5 ppm) increased with the length of saturation pulse in both LGG (0.48 ± 0.56% at 0.5 s, 1.28 ± 0.56% at 1 s, 1.88 ± 0.56% at 2 s and HGG (1.72 ± 0.54% at 0.5 s, 2.90 ± 0.49% at 1 s, 3.83 ± 0.88% at 2 s). In both LGG and HGG, APT-weighted contrast was enhanced with the use of longer saturation pulses.


Assuntos
Amidas/metabolismo , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioma/patologia , Imageamento por Ressonância Magnética/instrumentação , Prótons , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...